

Verilog Digital
System Design

RT Level Synthesis,Testbench
and Verification

Zainalabedin Navabi, Ph.D.
Professor of Electrical and Computer Engineering

Northeastern University
Boston, Massachusetts

Second Edition

McGraw-Hill
New York Chicago San Francisco Lisbon London Madrid

Mexico City Milan New Delhi San Juan Seoul
Singapore Sydney Toronto

http://dx.doi.org/10.1036/0071445641

Copyright © 2006 by The McGraw-Hill Publishing Companies, Inc. All rights reserved. Manufactured
in the United States of America. Except as permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by any means, or stored in
a database or retrieval system, without the prior written permission of the publisher.

0-07-158892-2

The material in this eBook also appears in the print version of this title: 0-07-144564-1.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after
every occurrence of a trademarked name, we use names in an editorial fashion only, and to the
benefit of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales
promotions, or for use in corporate training programs. For more information, please contact George
Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors
reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted
under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not
decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use;
any other use of the work is strictly prohibited. Your right to use the work may be terminated if you
fail to
comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO
GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETE-
NESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or
guarantee that the functions contained in the work will meet your requirements or that its operation
will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or
anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages
resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed
through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or
inability to use the work, even if any of them has been advised of the possibility of such damages. This
limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises
in contract, tort or otherwise.

DOI: 10.1036/0071445641

http://dx.doi.org/10.1036/0071445641

We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Professional

Want to learn more?

http://dx.doi.org/10.1036/0071445641

To my mother, Sadri Kheradmand (Navabi),
who inspired me to pursue a life of science
and engineering.

This page intentionally left blank

Contents

Preface xiii

Chapter 1. Digital System Design Automation with Verilog 1

1.1 Digital Design Flow 2
1.1.1 Design entry 3
1.1.2 Testbench in Verilog 4
1.1.3 Design validation 4
1.1.4 Compilation and synthesis 7
1.1.5 Postsynthesis simulation 10
1.1.6 Timing analysis 10
1.1.7 Hardware generation 10

1.2 Verilog HDL 10
1.2.1 Verilog evolution 11
1.2.2 Verilog attributes 11
1.2.3 The Verilog language 13

1.3 Summary 13
Problems 13
Suggested Reading 14

Chapter 2. Register Transfer Level Design with Verilog 15

2.1 RT Level Design 15
2.1.1 Control/data partitioning 16
2.1.2 Data part 16
2.1.3 Control part 17

2.2 Elements of Verilog 18
2.2.1 Hardware modules 18
2.2.2 Primitive instantiations 19
2.2.3 Assign statements 20
2.2.4 Condition expression 20
2.2.5 Procedural blocks 20
2.2.6 Module instantiations 21

2.3 Component Description in Verilog 22

v

For more information about this title, click here

http://dx.doi.org/10.1036/0071445641

2.3.1 Data components 22
2.3.2 Controllers 29

2.4 Testbenches 33
2.4.1 A simple tester 33
2.4.2 Tasks and functions 34

2.5 Summary 34
Problems 35
Suggested Reading 35

Chapter 3. Verilog Language Concepts 37

3.1 Characterizing Hardware Languages 37
3.1.1 Timing 37
3.1.2 Concurrency 39
3.1.3 Timing and concurrency example 40

3.2 Module Basics 41
3.2.1 Code format 41
3.2.2 Logic value system 41
3.2.3 Wires and variables 42
3.2.4 Modules 42
3.2.5 Module ports 43
3.2.6 Names 43
3.2.7 Numbers 44
3.2.8 Arrays 46
3.2.9 Verilog operators 48

3.2.10 Verilog data types 54
3.2.11 Array indexing 58

3.3 Verilog Simulation Model 59
3.3.1 Continuous assignments 61
3.3.2 Procedural assignments 65

3.4 Compiler Directives 71
3.4.1 `timescale 71
3.4.2 `default-nettype 71
3.4.3 `include 71
3.4.4 `define 71
3.4.5 `ifdef, `else, `endif 72
3.4.6 `unconnected-drive 72
3.4.7 `celldefine, `endcelldefine 72
3.4.8 `resetall 72

3.5 System Tasks and Functions 72
3.5.1 Display tasks 73
3.5.2 File I/O tasks 73
3.5.3 Timescale tasks 74
3.5.4 Simulation control tasks 74
3.5.5 Timing check tasks 74
3.5.6 PLA modeling tasks 74
3.5.7 Conversion functions for reals 75
3.5.8 Other tasks and functions 75

3.6 Summary 76
Problems 76
Suggested Reading 80

vi Contents

Chapter 4. Combinational Circuit Description 81

4.1 Module Wires 81
4.1.1 Ports 81
4.1.2 Interconnections 82
4.1.3 Wire values and timing 82
4.1.4 A simple testbench 84

4.2 Gate Level Logic 85
4.2.1 Gate primitives 85
4.2.2 User defined primitives 87
4.2.3 Delay formats 88
4.2.4 Module parameters 90

4.3 Hierarchical Structures 93
4.3.1 Simple hierarchies 93
4.3.2 Vector declarations 95
4.3.3 Iterative structures 96
4.3.4 Module path delay 99

4.4 Describing Expressions with Assign Statements 102
4.4.1 Bitwise operators 102
4.4.2 Concatenation operators 104
4.4.3 Vector operations 104
4.4.4 Conditional operation 105
4.4.5 Arithmetic expressions in assignments 108
4.4.6 Functions in expressions 109
4.4.7 Bus structures 110
4.4.8 Net declaration assignment 111

4.5 Behavioral Combinational Descriptions 112
4.5.1 Simple procedural blocks 113
4.5.2 Timing control 113
4.5.3 Intra-assignment delay 116
4.5.4 Blocking and nonblocking assignments 116
4.5.5 Procedural if-else 118
4.5.6 Procedural case statement 120
4.5.7 Procedural for statement 122
4.5.8 Procedural while loop 123
4.5.9 A multilevel description 124

4.6 Combinational Synthesis 125
4.6.1 Gate level synthesis 127
4.6.2 Synthesizing continuous assignments 128
4.6.3 Behavioral synthesis 129
4.6.4 Mixed synthesis 132

4.7 Summary 132
Problems 132
Suggested Reading 134

Chapter 5. Sequential Circuit Description 135

5.1 Sequential Models 135
5.1.1 Feedback model 136
5.1.2 Capacitive model 136
5.1.3 Implicit model 136

Contents vii

5.2 Basic Memory Components 137
5.2.1 Gate level primitives 137
5.2.2 User defined sequential primitives 139
5.2.3 Memory elements using assignments 140
5.2.4 Behavioral memory elements 142
5.2.5 Flip-Flop timing 149
5.2.6 Memory vectors and arrays 151

5.3 Functional Registers 157
5.3.1 Shift registers 157
5.3.2 Counters 161
5.3.3 LFSR and MISR 163
5.3.4 Stacks and queues 167

5.4 State Machine Coding 171
5.4.1 Moore machines 171
5.4.2 Mealy machines 174
5.4.3 Huffman coding style 176
5.4.4 A more modular style 180
5.4.5 A ROM based controller 181

5.5 Sequential Synthesis 181
5.5.1 Latch models 183
5.5.2 Flip-flop models 184
5.5.3 Memory initialization 185
5.5.4 General sequential circuit synthesis 186

5.6 Summary 186
Problems 187
Suggested Reading 189

Chapter 6. Component Test and Verification 191

6.1 Testbench 191
6.1.1 Combinational circuit testing 192
6.1.2 Sequential circuit testing 194

6.2 Testbench Techniques 195
6.2.1 Test data 196
6.2.2 Simulation control 197
6.2.3 Limiting data sets 198
6.2.4 Applying synchronized data 199
6.2.5 Synchronized display of results 200
6.2.6 An interactive testbench 201
6.2.7 Random time intervals 204
6.2.8 Buffered data application 205

6.3 Design Verification 206

6.4 Assertion Verification 207
6.4.1 Assertion verification benefits 208
6.4.2 Open verification library 208
6.4.3 Using assertion monitors 209
6.4.4 Assertion templates 216

6.5 Text Based Testbenches 219

6.6 Summary 220
Problems 220
Suggested Reading 221

viii Contents

Chapter 7. Detailed Modeling 223

7.1 Switch Level Modeling 223
7.1.1 Switch level primitives 224
7.1.2 The basic switch 225
7.1.3 CMOS gates 226
7.1.4 Pass gate logic 230
7.1.5 Switch level memory elements 234

7.2 Strength Modeling 241
7.2.1 Strength values 242
7.2.2 Strength used in resolution 244
7.2.3 Strength reduction 247

7.3 Summary 250
Problems 250
Suggested Reading 251

Chapter 8. RT Level Design and Test 253

8.1 Sequential Multiplier 253
8.1.1 Shift-and-add multiplication process 254
8.1.2 Sequential multiplier design 256
8.1.3 Multiplier testing 261

8.2 von Neumann Computer Model 265
8.2.1 Processor and memory model 265
8.2.2 Processor model specification 266
8.2.3 Designing the adding CPU 267
8.2.4 Design of datapath 268
8.2.5 Control part design 269
8.2.6 Adding CPU Verilog description 270
8.2.7 Testing adding CPU 275

8.3 CPU Design and Test 281
8.3.1 Details of processor functionality 281
8.3.2 SAYEH datapath 283
8.3.3 SAYEH Verilog description 287
8.3.4 SAYEH top-level testbench 298
8.3.5 Sorting test program 304
8.3.6 SAYEH hardware realization 304

8.4 Summary 306
Problems 306
Suggested Reading 307

Appendix A. List of Keywords 309

Appendix B. Frequently Used System Tasks and Functions 311

Appendix C. Compiler Directives 319

Appendix D. Verilog Formal Syntax Definition 321

Appendix E. Verilog Assertion Monitors 345

Index 375

Contents ix

This page intentionally left blank

Preface

This book is on the IEEE Standard Hardware Description Language
based on the Verilog® Hardware Description Language (Verilog HDL),
IEEE Std 1364–2001. The intended audiences are engineers involved in
various aspects of digital systems design and manufacturing and students
with the basic knowledge of digital system design. The emphasis of the
book is on using Verilog HDL for the design, verification, and synthesis of
digital systems. We will discuss Register Transfer (RT) level digital system
design, and discuss how Verilog can be used in this design flow.

In the last few years RT level design of digital systems has gone
through significant changes. Beyond simulation and synthesis that are
now part of any RTL design process, we are looking at testbench gen-
eration and automatic verification tools. As with any book on Verilog,
this book covers digital design and Verilog for simulation and synthe-
sis. However, to ready design engineers for designing, testing, and ver-
ifying large digital system designs, the book contains material for
testbench development and verification. The subjects of testbench and
verification are introduced in Chapter 1. Chapter 2 onwards we con-
centrate on Verilog for design and synthesis. This will teach the read-
ers efficient Verilog coding techniques for describing actual hardware
components. When all of Verilog from a design point of view is pre-
sented, we turn our attention to test and verification. Chapter 6 covers
testbench development techniques and use of assertion verification mon-
itors for better analysis of a design. Toward the end of the book we put
together our coding techniques for synthesis and testbench develop-
ment, and present several RT level designs from design specification to
verification.

Embedded in the presentation of the language, the book provides a
review of digital system design and computer architecture concepts.
This review is useful for relearning these concepts as demanded by new
design methodologies and hardware description language based design
tools. For practicing engineers the flow of the book, which starts from

xi

Copyright © 2006 by The McGraw-Hill Publishing Companies, Inc. Click here for terms of use.

introductory material and advances into complex digital design con-
cepts, provides a self-sufficient learning tool. The material is suitable
for an upper division undergraduate or a first year graduate course. For
a one-semester course on the Verilog HDL language and its use in a dig-
ital system design environment, the book can be used in its entirety. The
book can also be used as a supplement for graduate and undergraduate
digital system design and computer organization courses.

Overview of the Chapters

Chapter overviews are presented below. This material is intended to help
a reader concentrate on parts of the book that he or she finds suit able
to his or her needs best. Chapters 1 and 2 are introductory, and contain
material with which many readers may already be familiar. It is, how-
ever, recommended that these chapters not be completely omitted, even
by experienced readers. The Verilog language is presented in Chapter 3
and includes the details of language syntax and semantics. The next two
chapters (4 and 5) concentrate on Verilog for describing hardware from
a design point of view. This is followed by a chapter on testing. Together,
Chapters 4, 5, and 6 cover use of Verilog for design and test of digital
systems. Chapter 7, which is on detailed modeling, is useful for VLSI
designers. The last example in Chapter 8 is a complete processor that
is modeled for synthesis and a complete testbench is developed for it.

Chapter 1 gives an overview of digital design process and the use of hard-
ware description languages in this process. Simulation, synthesis, formal
verification, and assertion verification are discussed in this chapter.

Chapter 2 shows various ways hardware components can be described
in Verilog. The purpose of this chapter is to give the reader a general
overview of the Verilog language.

Chapter 3 discusses the complete Verilog language structure. The
focus of the chapter is more on the linguistic issues and not on model-
ing hardware components. A general understanding of the language is
necessary before it can be used for hardware modeling. Writing Verilog
for describing hardware is discussed in the chapters that follow this
chapter.

Chapter 4 starts with gates and ends with high-level Verilog con-
structs for description of combinational circuits. Concurrency and timing
will be discussed in the examples of this chapter. Except for specifica-
tion of timing parameters, codes discussed in this chapter are synthe-
sizable. A section in this chapter presents rules for writing synthesizable
combinational circuits.

Chapter 5 discusses modeling and description of sequential circuits
in Verilog. The chapter begins with models of memory and shows how
they can be specified in Verilog. Registers, counters, and state machines

xii Preface

are discussed in this chapter. A section in this chapter presents rules for
writing synthesizable sequential circuits.

Chapter 6 is on writing testbenches in Verilog. The previous two
chapters discussed Verilog from a hardware design point of view, and
this chapter shows how components described as such can be tested.
We talk about data generation, response analysis, and assertion veri-
fication.

Chapter 7 covers switch level modeling and detailed representation
of signals in Verilog. This material is geared more for those using Verilog
as a modeling language and less for designers. VLSI structures can be
described by Verilog constructs discussed here.

Chapter 8 shows complete RTL design flow, from problem specifica-
tion to test. We show several complete examples that take advantage of
material of Chapters 4, 5, and 6 for description, simulation, verification,
and synthesis of digital systems. Examples in this chapter take advan-
tage of text IO facilities of Verilog for storing test data and circuit
responses.

Appendix Acontains Verilog keywords. Appendix B lists commonly used
system tasks and briefly describes each task. Appendix C lists Verilog
compiler directives and explains their use. Appendix D presents the
standard IEEE Verilog HDL syntax. Language constructs terminals
and nonterminals are presented here in a formal grammar representa-
tion. Appendix E presents the OVL assertion monitors. After a brief
description of each assertion monitor its parameters and arguments
are explained.

Suggested Reading Flow

The book teaches the Verilog language for RT level design, simulation,
verification, and synthesis of digital systems. For a complete compre-
hension of these issues, or for a complete one-semester graduate course,
the book is recommended in its entirety. However, for specific needs
and requirements or for an undergraduate course on automated design
methodologies, parts of the book can also be used. The following para-
graphs present several such uses.

For a hardware designer interested in learning about synthesis,
Chapters 4 and 5 are the most important ones. For such users, Chapter 3
can be used as a reference, and Chapter 6, which is on testbench devel-
opment, can be studied as needed. When the designer is ready to consider
complete systems, Chapter 8 is recommended.

Chapter 2 is introductory and provides an overview of the language.
For a student using Verilog in a lower-level undergraduate course, this
chapter is a good starting point for learning the language. More com-
plex parts of the language can then be learned as needed.

Preface xiii

Chapter 8 can be used for learning computer organization concepts and
the use of Verilog in description of these structures. Readers familiar with
Verilog can use their knowledge to learn the inter-workings of CPU struc-
tures, instruction execution, and testing large systems.

The flow of the book is such that it provides a complete knowledge of
Verilog using the same flow as that used in teaching hardware design
in most 4-year Computer Engineering programs. The following outlines
indicate various applications of the book for beginners, undergraduate
students, graduate students, designer engineers, modelers, and system
designers.

1. General introduction for a lower-level undergraduate course or an
entry level design engineer:
� Chapters 1–2. Design flow and Verilog overview
� Chapters 4–5. Combinational and sequential circuits for synthesis

2. Advanced logic design for a senior-level course or an advanced design
engineer with some familiarity with design flow and Verilog syntax:
� Chapters 1–2. A review of Verilog-based design
� Chapter 3. Language semantics and constructs
� Chapters 4–5. Combinational and sequential circuits for synthesis
� Chapter 6. Test methods

3. Advanced system design for a senior-level course or an advanced
system design engineer with some familiarity with design flow and
Verilog syntax:
� Chapters 1–2. A review of Verilog-based design
� Chapter 3. Use as reference as needed
� Chapters 4–5. Combinational and sequential circuits for synthesis
� Chapter 6. Test methods
� Chapter 8. Top-down design of systems

4. Advanced modeling and system design for a graduate-level course or
an advanced VLSI design engineer:
� Chapters 1–2. A review of Verilog-based design
� Chapter 3. Use as reference as needed
� Chapters 4–5. Combinational and sequential circuits for synthesis
� Chapter 6. Test methods
� Chapter 7. Switch level and CMOS modeling
� Chapter 8. Top-down design of systems

5. Parallel with undergraduate Computer Engineering program:
� Use Chapters 1 and 2 early in a digital logic design course
� Use Chapters 4 and 5 in a digital logic design course in parallel with

discussion of combinational and sequential circuits
� Use Chapter 6 in a technical elective design course

xiv Preface

� Use Chapter 7 in the senior-level VLSI course
� Use Chapter 8 in the Junior or Sophomore computer architecture

course

Code Examples

Among many tasks involved in the preparation of the manuscript, for
a book describing a language that is as example oriented as this book,
selecting appropriate set of examples and presenting them to the reader
are of special importance. For every design example presented in this
book, a testbench is generated and the design has been tested. With
every example, there is a logic design concept and there are several
Verilog constructs and features that are covered. The set of examples is
chosen to present the complete Verilog language for synthesis. These
examples start with using simple Verilog constructs and progressively
move into more complex ones. Parallel with the flow of language con-
structs, the book starts with using simple logic design concepts, such as
using basic gates for combinational circuits, and moves into advanced
logic design concepts such as queues and processors.

The CD accompanying this book includes simulation, synthesis, and
device programming software tools. Verilog description of the examples
of this book and their testbenches are also included on this CD. For the
instructors using this book in an educational setting, solutions for the
end of chapter problems and Power Point lecture slides can be obtained
from the author or the publisher.

Acknowledgments

Guidelines, comments, reviews, and support of many people helped the
development of this book, and the author wishes to thank them. The
style used for presenting the material is based on simple examples that
cover a certain topic and discussing the issues that the example covers.
As with the other books that I have written, I have used guidelines and
writing philosophy of the late Professor Fredrick J. Hill of the University
of Arizona, with whom I worked many years as a student and a research
associate. My students and colleagues were particularly helpful in the
development of this book. In the past 15 years, my students at the
University of Tehran, Northeastern University and National Technological
University have been very helpful in bringing up ideas for more illustra-
tive examples. Many examples come from exam and homework ques-
tions that these students had to struggle with.

At the start of this writing project, my associate, Ms. Fatemeh Asgari
assumed responsibility for managing the preparation of the manuscript.
Organizing the efforts for manuscript preparation, managing the timing

Preface xv

of this task with my many other tasks has been a very challenging task
for her. Her crystal ball always told the truth about how bad I would miss
my deadlines. Students at the University of Tehran, Armin Alaghi,
Najmeh Fakhraie, Amirali Ghofrani, Aida Hasani, and Mahsan Rofouei,
were very helpful in completion of this project. They helped reviewing
the manuscript, coding, preparing the artwork, and suggesting ways of
improving the flow of the book for different levels of audiences.

Most of all, I thank my wife, Irma Navabi, for help encouragement and
understanding of my working habits. Such an intensive work could not
be done if I did not have support of my wife and my two sons, Aarash
and Arvand. I thank them for this and other scientific achievements I
have had.

Zainalabedin Navabi, Ph.D.
Boston, Massachusetts

navabi@ece.neu.edu

xvi Preface

Chapter

1
Digital System Design

Automation with Verilog

As the size and complexity of digital systems increase, more computer-
aided design (CAD) tools are introduced into the hardware design
process. Early simulation and primitive hardware generation tools have
given way to sophisticated design entry, verification, high-level syn-
thesis, formal verification, and automatic hardware generation and
device programming tools. Growth of design automation tools is largely
due to hardware description languages (HDLs) and design methodolo-
gies that are based on these languages. Based on HDLs, new digital
system CAD tools have been developed and are now widely used by
hardware designers. At the same time research for finding better and
more abstract hardware languages continues. One of the most widely
used HDLs is the Verilog HDL. Because of its wide acceptance in digi-
tal design industry, Verilog has become a must-know for design engi-
neers and students in computer-hardware-related fields.

This chapter presents tools and environments that are based on
Verilog and are available to a hardware designer for automating his or
her design process, and hence improving the final product’s time to
market. We discuss steps involved in taking a hierarchical, high-level
design from a Verilog description of the design to its implementation in
hardware. Processes and terminologies are illustrated here. We discuss
available electronic design automation (EDA) tools that are based on
Verilog, and talk about their role in an automated design environment.
The last section of this chapter discusses some of the properties of
Verilog that make this language a good choice for designers and mod-
elers of hardware.

1

Copyright © 2006 by The McGraw-Hill Publishing Companies, Inc. Click here for terms of use.

1.1 Digital Design Flow

For the design of a digital system using an automated design environ-
ment, the design flow begins with specification of the design at various
levels of abstraction and ends with generating netlist for an application
specific integrated circuits (ASIC), layout for a custom IC, or a program
for a programmable logic devices (PLD). Figure 1.1 shows steps involved
in this design flow.

In the design entry phase, a design is specified as a mixture of behav-
ioral Verilog code, instantiation of Verilog modules, and bus and wire assign-
ments. A design engineer is also responsible for generating testbenches

2 Chapter One

Compilation and Synthesis

SynthesisAnalysis Routing and placement

Y = a & d & w
w = a & b | c

Post-synthesis Simulation

Timing Analysis

1.6 ns2 ns

Behavioral Simulation Assertion Verification Formal Verification

Pass/Fail Report
Property Coverage
Counter Examples

Comp1 U1 (. . .);
Comp2 U2 (. . .);
. . .
Compn Un (. . .);

always (posedge clk)
begin . . . end

if (. . .) bus = w;
else . . .

module design (. . .);
 assign . . .
 always . . .
 compi (. . .)
endmodule

Testbench in Verilog

Device Programming ASIC Netlist Custom IC Layout

EDIF
or other netlists1010...

module testbench ();
 generate data;
 process data;
endmodule

Violation Report;
Time of Violation;
Monitor Coverage

C++ Classes,
Language Representation

Design Entry in Verilog

Figure 1.1 FPLD Design Flow

for his or her design for verification of the design and later for verify-
ing the synthesis output. Design verification can be done by simulation,
assertion verification, formal verification, or a mix of all three. After per-
forming this design validation phase (this is called the presynthesis
verification), this design is taken through the synthesis process to trans-
late it into actual hardware of a target device. Here, target device refers
to the specific field programmable logic device (FPLD) that is being pro-
grammed, the ASIC that is being manufactured by an outside source,
or the custom IC that is being fabricated. After the synthesis process and
before the actual hardware is generated, another simulation, which is
referred to as postsynthesis simulation, is done. This simulation can take
advantage of the same testbench generated for the Verilog model of the
system before it is synthesized. This way, the behavioral model of the
design and its hardware model are tested with the same data. The dif-
ference between pre- and postsynthesis simulations is in the level of
details obtained from each simulation.

The sections that follow elaborate on each of the blocks shown in Fig. 1.1.
Most Verilog based EDAenvironments provide blocks shown in this figure.

1.1.1 Design entry

The first step in the design of a digital system is the design entry phase.
In this phase, the design is described in Verilog in a top-down hierarchical
fashion. A complete design may consist of components at the gate or
transistor level, behavioral parts describing high-level functionality of a
hardware module, or components described by their bussing structure.

Because high-level Verilog designs are usually described at the level that
specifies system registers and transfer of data between registers through
busses, this level of system description is referred to as register transfer
level (RTL). Acomplete design described as such has a clear hardware cor-
respondence. Verilog constructs used in an RT level design are procedural
statements, continuous assignments, and instantiation statements.

Verilog procedural statements are used for high-level behavioral
descriptions. A system or a component is described in a procedural
fashion similar to the way processes are described in a software language.
For example, we can describe a component by checking its input condi-
tions, setting flags, waiting for events to occur, monitoring handshaking
signals, and issuing outputs. Describing a system procedurally, Verilog
if-else, case and other software-language-like constructs can be used.

Verilog continuous assignments are statements for representing logic
blocks, bus assignments, and bus and input/output interconnect speci-
fications. Combined with boolean and conditional operations, these lan-
guage constructs can be used for describing components and systems in
terms of their register and bus assignments.

Digital System Design Automation with Verilog 3

Verilog instantiation statements are for using lower-level components
in an upper-level design. Instead of describing behavior, functionality,
or bussing of a system, we can describe a system in Verilog in terms of
its lower-level components. These subcomponents can be as small as a
gate or a transistor, or as large as a complete processor.

1.1.2 Testbench in Verilog

A system designed in Verilog must be simulated and tested for function-
ality before it is turned into hardware. In this simulation pass, design
errors and incompatibility of components used in the design can be
detected. Simulating a design requires generation of test data and obser-
vation of simulation results. This process can be done by use of a Verilog
module that is referred to as a testbench. A Verilog testbench uses high-
level constructs of this language for data generation, response monitor-
ing, and even handshaking with the design. Inside the testbench, the
design that is being simulated is instantiated. The testbench together with
the design forms a simulation model used by a Verilog simulation engine.

1.1.3 Design validation

An important task in any digital design is design validation. Design val-
idation is the process that a designer checks his or her design for any
design flaws that may have occurred in the design process. A design flaw
can happen due to ambiguous problem specifications, designer errors,
or incorrect use of parts in the design. Design validation can be done by
simulation, assertion verification, or formal verification.

1.1.3.1 Simulation. Simulation for design validation is done before a
design is synthesized. This simulation pass is also referred to as behav-
ioral, RT level, or presynthesis simulation. At the RT level a design
includes clock-level timing but no gate and wire delays are included.
Simulation at this level is accurate to the clock level. Timing of RT-level
simulation is at the clock level and does not usually consider hazards,
glitches, race conditions, setup and hold violations, and other detailed
timing issues. The advantage of this simulation is its speed compared
with simulations at the gate or transistor levels.

Simulation of a design requires test data, and usually Verilog simu-
lation environments provide various methods for application of these
data to the design being tested. Test data can be generated graphically
using waveform editors, or through a testbench. Figure 1.2 shows two
alternatives for defining test input data for a simulation engine. Outputs
of simulators are in the form of waveforms (for visual inspection) and text
for large designs for machine processing.

4 Chapter One

For simulating with a Verilog testbench, the testbench instantiates the
design under test, and as part of the code of the testbench it applies test
data to the instantiated circuit. Figure 1.3 shows a Verilog code of a
counter circuit, its testbench, and its simulation results in form of a
waveform. As shown here, simulation validates the functionality of the
counter circuit being tested. With every clock pulse the counter is incre-
mented by 1. Note in the timing diagram that the counter output changes
with the rising edge of the clock and no gate delays and propagation
delays are shown. Simulation results show the correct functionality of
the counter regardless of the clock frequency.

Obviously, an actual hardware component behaves differently. Based
on the timing and delays of the parts used, there will be a nonzero delay
between the active edge of the clock and the counter output. Furthermore,
if the clock frequency applied to an actual part is too fast for propaga-
tion of values within the gates and transistors of a design, the output of
the design becomes unpredictable.

The simulation shown here is not provided with the details of the
timing of the hardware being simulated. Therefore, potential timing
problems of the hardware that are due to gate delays cannot be detected.
This is typical of a presynthesis or high-level behavioral simulation.
What is being verified in Fig. 1.3 is that our counter counts binary num-
bers. How fast the circuit works and what clock frequency it requires
can only be verified after the design is synthesized.

Digital System Design Automation with Verilog 5

Testbench

Text,
VCD...

Waveform

Other forms

Simulation Model

Hierachical
Design

Description

Simulator

...

Simulation Model

Text,
VCD...

Waveform

Other forms

...

Stimuli

Hierachical
Design

Description

Simulator

Waveform

Figure 1.2 Using a Testbench or a Waveform Editor for
Simulation

1.1.3.2 Assertion verification. Instead of having to inspect simulation
results manually or by developing sophisticated testbenches, assertion
monitors can be used to continuously check for design properties while
the design is being simulated. Assertion monitors are put in the design
being simulated by the designer. The designer decides that if the design
functions correctly, certain conditions have to be met. These conditions
are regarded as design properties, and assertion monitors are developed
by designer to assert that these properties are not violated. An asser-
tion monitor fires if a design property put in by the designer is violated.
This alerts the designer that the design is not functioning according to
the designer’s expectation. Open verification library (OVL) provides a
set of assertion monitors for monitoring common design properties.
Designers can use their own assertions and use them in conjunction with
their testbenches.

1.1.3.3 Formal verification. Formal verification is the process of check-
ing a design against certain properties. When a design is completed, the
designer develops a set of properties reflecting correct behavior of his
or her design. A formal verification tool examines the design to make
sure that the described properties hold under all conditions. If a situation

6 Chapter One

`timescale 1 ns/100 ps
module Chap1CounterTester ();

reg Clk=0, Reset=0;
wire [3:0] Count;

 initial begin

 Reset = 0; #5 Reset = 1; #115 Reset = 0;
 #760 $stop;
 end

always #26.5 Clk = ~ Clk;
Chap1Counter U1 (Clk, Reset, Count);

endmodule

 module Chap1Counter (Clk, Reset, Count);
 input Clk, Reset;
output [3:0] Count;
reg [3:0] Count;
always @(posedge Clk) begin

 if (Reset) Count = 0;
else Count = Count + 1;

 end

endmodule

Simulator
Testbench

Design to Simulate

Name V...

1

0Reset

Clk

ACount

100 200 300 400 500 600

+ X 0 1 2 3 4 5 6 7 8 9 A

Figure1.3 Verilog Simulation with a Testbench

is found that the property will not hold, the property is said to have been
violated. Input conditions that make a property fail are regarded as the
property’s counter examples. Property coverage indicates how much of
the complete design is exercised by the property.

1.1.4 Compilation and synthesis

Synthesis is the process of automatic hardware generation from a design
description that has an unambiguous hardware correspondence. A
Verilog description for synthesis cannot include signal and gate level
timing specifications, file handling, and other language constructs that
do not translate to sequential or combinational logic equations.
Furthermore, Verilog descriptions for synthesis must follow certain
styles of coding for combinational and sequential circuits. These styles
and their corresponding Verilog constructs are defined under Verilog for
RTL synthesis.

In the design process, after a design is successfully entered and its
presynthesis simulation results have been verified by the designer, it
must be compiled to make it one step closer to an actual hardware on
silicon. This design phase requires specification of the hardware that the
design is to be realized in. For example, we have to specify a specific
ASIC, or a field programmable gate array (FPGA) part as our “target
hardware.” When the target hardware is specified, technology files of
that hardware (ASIC, FPGA, or custom IC) with detailed timing and
functional specification become available to the compilation process.
The compilation process, translates various parts of the design to an
intermediate format (analysis phase), links all parts together, generates
the corresponding logic (synthesis phase), places and routes compo-
nents of the target hardware, and generates timing details.

Figure 1.4 shows the compilation process and a graphical represen-
tation for each of the compilation phase outputs. As shown, the input of
this phase is a hardware description that consists of various levels of
Verilog, and its output is a detailed hardware for programming an
FPLDor manufacturing an ASIC.

1.1.4.1 Analysis. A complete design that is described in Verilog may con-
sist of behavioral Verilog, bus and interconnection specifications, and
wiring of other Verilog components. Before the complete design is turned
into hardware, the design must be analyzed and a uniform format must
be generated for all parts of the design. This phase also checks the syntax
and semantics of the input Verilog code.

1.1.4.2 Generic hardware generation. After obtaining a uniform pres-
entation for all components of a design, the synthesis pass begins its

Digital System Design Automation with Verilog 7

operation by turning the design into a generic hardware format, such
as a set of boolean expressions or a netlist of basic gates.

1.1.4.3 Logic optimization. The next phase of synthesis, after a design
has been converted to a set of boolean expressions, is the logic opti-
mization phase. This phase is responsible for reducing expressions with
constant input, removing redundant logic expressions, two-level mini-
mization, and multilevel minimization that include logic sharing.

This is a very computationally intensive process, and some tools allow
users to decide on the level of optimization. Output of this phase is in
the form of boolean expressions, tabular logic representations, or prim-
itive gate netlists.

1.1.4.4 Binding. After logic optimization, the synthesis process uses
information from target hardware to decide exactly what logic elements
and cells are needed for the realization of the circuit that is being

8 Chapter One

Design Specification

Comp1 U1 (. . .);
Comp2 U2 (. . .);
. . .
Compn Un (. . .);

Analysis

Logic
Optimization

Target Hardware
Specification

Intermediate Format

Synthesis

TPd = ...; TSu = ...

Chip
Manufacturing

or
Device

Programming

always (posedge clk)
begin . . . end

if (. . .) bus = w;
else . . .

module design (. . .);
assign . . .
always . . .
compi (. . .)

endmodule

Generic
Hardware

Generation
Binding

Operating
Condition

Routing
and

Placement

Timing
Analysis

Figure 1.4 Compilation and Synthesis Process

designed. This process is called binding and its output is specific to the
FPLD, ASIC, or custom IC being used.

1.1.4.5 Routing and placement. The routing and placement phase
decides on the placement of cells of the target hardware. Wiring inputs
and outputs of these cells through wiring channels and switching areas
of the target hardware are determined by the routing and placement
phase. The output of this phase is specific to the hardware being used
and can be used for programming an FPLD or manufacturing an ASIC.

An example of a synthesis run is shown in Fig. 1.5. In this figure, the
counter circuit used in the simulation run of Fig. 1.3 is being synthesized.
In addition to the Verilog description of the design, the synthesis tool
shown requires specification of the target hardware to synthesize to.
The output of the synthesis tool is a list of gates and flip-flops available

Digital System Design Automation with Verilog 9

 module Chap1Counter (Clk, Reset, Count);
 input Clk, Reset;
output [3:0] Count;
reg [3:0] Count;
always @(posedge Clk) begin

 if (Reset) Count = 0;
else Count = Count + 1;

 end

endmodule

Synthesis Tool

Target hardware specification

List of primitive components
 - Flip-flops
 - Logic elements
Timing specifications
 - Pin-to-pin timing

Design to Synthesize

Reset
Reset

Reset

Reset

Clk

C
0
1

C
0
1

18

17

C
0
1

16

16 OUT1

17 OUT1

18 OUT1

Ck

Ck

Ck
Ck

D Q
PRE

ENA
CLR

D Q
PRE

ENA
CLR

D Q
PRE

ENA
CLR

D Q
PRE

ENA
CLR

Count[2]-reg0

Count[3]-reg0OUT1
Count[2]-reg0OUT1
Count[1]-reg0OUT1
Count[0]-reg0OUT1

Count[3]-reg0OUT1

Count[3]-reg0

Count[2]-reg0OUT1
Count[1]-reg0OUT1
Count[0]-reg0OUT1

Count[1]-reg0

Count[0]-reg0

Count
[3..0]

1-Co[2]

1-Co[1]

1-Co[1]

0 Cin

a[3..0]

b[3..0]

c[3..0]

i−0

ADDER

Reset

0
1C

1-Co[2]

15

15OUT1

Figure 1.5 An Example Synthesis Run

in the target hardware, and their interconnections. A graphical repre-
sentation of this output that is automatically generated by the synthe-
sis tool of Altera’s Quartus II is shown in Fig. 1.5.

1.1.5 Postsynthesis simulation

After synthesis is done, the synthesis tool generates a complete netlist
of target hardware components and their timings. The details of gates
used for the implementation of the design are described in this netlist.
The netlist also includes wiring delays and load effects on gates used in
the postsynthesis design. The netlist output is made available in vari-
ous netlist formats including Verilog. Such a description can be simu-
lated and its simulation is referred to postsynthesis simulation. Timing
issues, determination of a proper clock frequency and race, and hazard
considerations can only be checked by a postsynthesis simulation run
after a design is synthesized. As shown in Fig. 1.1, the same testbench
testing the original Verilog design before synthesis can be used for post-
synthesis simulation.

Due to delays of wires and gates, it is possible that the behavior of a
design as intended by the designer and its behavior after postsynthesis
simulation are different. In this case, the designer must modify his or
her design and try to avoid close timings and race situations.

1.1.6 Timing analysis

As shown in Fig. 1.1, as part of the compilation process, or in some tools
after the compilation process, there is a timing analysis phase. This
phase generates worst-case delays, clocking speed, delays from one gate
to another, as well as required setup and hold times. Results of timing
analysis appear in tables and/or graphs. Designers use this information
to decide on their clocking speed and, in general, speed of their circuits.

1.1.7 Hardware generation

The last stage in an automated Verilog-based design is hardware gen-
eration. This stage generates a netlist for ASIC manufacturing, a pro-
gram for programming FPLDs, or layout of custom IC cells.

1.2 Verilog HDL

The previous section showed steps involved in taking an RT level design
from a Verilog description to hardware implementation. This design
process is only possible because Verilog is a language that can be under-
stood by system designers, RT level designers, test engineers, simulators,
synthesis tools, and machines. Because of this important role in design,

10 Chapter One

Verilog has become an IEEE standard. The standard is used by users
as well as tool developers.

1.2.1 Verilog evolution

Verilog was designed in early 1984 by Gateway Design Automation.
Initially the original language was used as a simulation and verifica-
tion tool. After the initial acceptance of this language by electronic
industry, a fault simulator, a timing analyzer, and later in 1987, a syn-
thesis tool was developed based on this language. Gateway Design
Automation and its Verilog-based tools were later acquired by Cadence
Design System. Since then, Cadence has been a strong force behind
popularizing the Verilog hardware description language.

In 1987 VHDL became an IEEE standard hardware description lan-
guage. Because of its Department of Defense (DoD) support, VHDL was
adapted by the U.S. government for related projects and contracts. In an
effort for popularizing Verilog, in 1990, OVI (Open Verilog International)
was formed and Verilog was placed in public domain. This created a new
line of interest in Verilog for the users and EDA vendors.

In 1993, efforts for standardization of this language started. Verilog
became the IEEE standard, IEEE Std. 1364-1995, in 1995. Already having
simulation tools, synthesizers, fault simulation programs, timing ana-
lyzers, and many of their design tools developed for Verilog, this stan-
dardization helped further acceptance of Verilog in electronic design
communities.

A new version of Verilog was approved by IEEE in 2001. This version
that is referred to as Verilog-2001 is the present standard used by most
users and tool developers. New features for external file access for read
and write, library management, constructs for design configuration,
higher abstraction level constructs, and constructs for specification of
iterative structures, are some of the features added to this version of
Verilog. Work on improving this standard continues in various IEEE
sponsored study groups.

1.2.2 Verilog attributes

Verilog is a hardware description language for describing hardware from
transistor level to behavioral. The language supports timing constructs
for switch level timing simulation and at the same time, it has features
for describing hardware at the abstract algorithmic level. A Verilog
description may consist of a mix of modules at various abstraction levels
with different degrees of detail.

1.2.2.1 Switch level. Features of the language that make it ideal for
switch level modeling and simulation includes primitive unidirectional

Digital System Design Automation with Verilog 11

and bidirectional switches with parameters for delay and charge storage.
Circuit delays may be modeled as propagation delay, rise and fall delay,
and line delays. The charge storage feature at this level of abstraction
in Verilog makes this language capable of describing dynamic compli-
mentary metal oxide semicondutor (CMOS) and metal oxide semicon-
ductor (MOS) circuits.

1.2.2.2 Gate level. Gate level primitives with predefined parameters
provide a convenient platform for netlist representation and gate level
simulation. For more detailed and special purpose gate simulations,
gate components may be defined at the behavioral level. Verilog also pro-
vides utilities for defining primitives with special functionalities. A
simple 4-value logic system is used in Verilog for signal values. However,
for more accurate logic modeling, Verilog signals also include 16 levels
of strength in addition to the four values.

1.2.2.3 Pin-to-pin delay. A utility for timing specification of components
at the input/output level is provided in Verilog. This utility can be used
for back annotation of timing information in original predesigned descrip-
tions. Moreover, the pin-to-pin language facility enables modelers to fine-
tune timing behavior of their models based on physical implementations.

1.2.2.4 Bussing specifications. Bus and register modeling utilities are
provided in Verilog. For various bus structures, Verilog supports pre-
defined wire and bus resolution functions using its 4-value logic value
system. Combination of bus logic and resolution-functions enable mod-
eling of most physical bus types. For register modeling, high-level clock
representation and timing-control constructs can be used for represen-
tation of registers with various clocking and resetting schemes.

1.2.2.5 Behavioral level. Procedural blocks of Verilog enable algorith-
mic representations of hardware structures. Constructs similar to those
in software programming languages are provided for describing hard-
ware at this level.

1.2.2.6 System utilities. System tasks in Verilog provide designers with
tools for testbench generation, file access for read and write, data han-
dling, data generation, and special hardware modeling. System utilities
for reading memory and programmable logic array (PLA) images pro-
vide convenient ways of modeling these components. Verilog display
and I/O tasks can be used to handle all inputs and outputs for data
application and simulation. Verilog allows random access to files for
read and write operations.

12 Chapter One

1.2.2.7 PLI. Programming language interface (PLI) of Verilog provides
an environment for accessing Verilog data structures using a library of
C-language functions.

1.2.3 The Verilog language

The Verilog HDL satisfies all requirements for design and synthesis of dig-
ital systems. The language supports hierarchical description of hardware
from system to gate or even switch level. Verilog has strong support at
all levels for timing specification and violation detection. Timing and con-
currency required for hardware modeling are specially emphasized.

In Verilog a hardware component is described by the module_declaration
language construct. Description of a module specifies a component’s
input and output list as well as internal component busses and registers.
Within a module, concurrent assignments, component instantiations,
and procedural blocks can be used to describe a hardware component.

Several modules can hierarchically be instantiated to form other hard-
ware structures. Leaves of a hierarchical design specification may be
modules, primitives, or user defined primitives. For simulating a design,
it is expected that all leaves of the hierarchy are individually compiled.

Many Verilog tools and environments exist that provide simulation,
fault simulation, formal verification, and synthesis. Simulation envi-
ronments provide graphical front-end programs and waveform editing
and display tools. Synthesis tools are based on a subset of Verilog. For
synthesizing a design, target hardware, e.g., specific FPGA or ASIC,
must be known.

1.3 Summary

This chapter gave an overview of mechanisms, tools, and processes used
for taking a design from the design stage to a hardware implementation.
This overview contained information that will become clearer in the
chapters that follow. This chapter also provided the reader with the
history of Verilog evolution. With this standard HDL, the efforts of tool
developers, researchers, and software vendors have become more
focused, resulting in better tools and more uniform environments. The
next chapter presents an overview of Verilog.

Problems

1.1 Study Altera’s FPGA design environment and see their simulation and
synthesis environments. How do you compare Altera’s environment with the
simulation and synthesis environments discussed in this chapter?

Digital System Design Automation with Verilog 13

1.2 Search for several commercial formal verification tools and generate a
report of their input formats, capabilities, and their verification utilities.

1.3 Study Accellera’s OVL library and discuss how this library helps the design
automation process.

1.4 Study SystemC and discuss tools available for this language.

1.5 Study the VHDL hardware description language and discuss tools
available for this language.

Suggested Reading

Accellera, Open Verification Library: Assertion Monitor Reference Manual, www.accellera.org,
v1.0, 2005.

Bening, L., and H. D. Foster, Principles of Verifiable RTL Design Second Edition–A
Functional Coding Style Supporting Verification Processes in Verilog, 2d ed. Springer,
Boston, MA, 2001, ISBN: 0792373685.

Brown, S., and Z. Vranesic, Fundamentals of Digital Logic with Verilog Design, McGraw-
Hill, New York, 2002, ISBN: 0-07-283878-7.

IEEE Std 1364-2001, IEEE Standard Verilog Language Reference Manual, SH94921-
TBR (print) SS94921-TBR (electronic), ISBN 0-7381-2827-9 (print and electronic),
2001.

IEEE Std 1076-2002, IEEE Standard VHDL Language Reference Manual, SH94983-TBR
(print) SS94983-TBR (electronic), ISBN 0-7381-3247-0 (print) 0-7381-3248-9 (electronic),
2002.

Lam, W. K., Hardware Design Verification: Simulation and Formal Method-Based Approaches,
Prentice Hall PTR, New Jersey, 2005, ISBN: 0131433474.

Navabi, Z., Digital Design and Implementation with Field Programmable Devices, Kluwer
Academic Publishers, Boston, MA, 2005, ISBN: 1-4020-8011-5.

Navabi, Z., Verilog Computer-Based Training Course, CBT CD with hardcopy User’s
manual, McGraw-Hill, New York, 2002, ISBN 0-07-137473-6.

14 Chapter One

www.accellera.org

Chapter

2
Register Transfer Level Design

with Verilog

The intent of this chapter is to present an overview of Verilog and the
design styles in which this language is used. Various concepts of a lan-
guage, be it a software or a hardware language, are interdependent. A
general knowledge of the language is therefore needed before more
detailed features of the language can be discussed. This chapter dis-
cusses register transfer level (RTL) design of digital systems and shows
how Verilog is used for description, testing, simulation, and synthesis
of various RT level components of a design. With this presentation, we
will also give an overview of Verilog and set the stage ready for more
elaborate discussion of Verilog constructs in the chapters that follow.

In the sections that follow we will first discuss RT level design and
how a complete system is put together at this abstraction level. The sec-
tion that follows this introductory material presents basic structures of
Verilog such as modules, ports, and utilities for test and verification of
design components. The rest of this chapter discusses coding of a com-
plete RT level design in Verilog. This part serves as an overview of the
complete Verilog HDL language.

2.1 RT Level Design

Design of small hardware components can usually be done by describ-
ing the hardware for synthesis and synthesizing and implementing the
design by appropriate computer aided design tools. On the other hand,
a large design requires proper planning, architectural design, and par-
titioning before its various parts can be written in Verilog for synthesis.
Taking a high-level description of a design, partitioning it, coming up with

15

Copyright © 2006 by The McGraw-Hill Publishing Companies, Inc. Click here for terms of use.

an architecture for it (i.e., designing its bussing structure), and then
describing and implementing various components of this architecture
is referred to as RT level design.

2.1.1 Control/data partitioning

The first step in an RT level design is the partitioning of the design into
a data part and a control part. The data part consists of data components
and the bussing structure of the design and the control part is usually
a state machine generating control signals that control the flow of data
in the data part.

Figure 2.1 shows a general sketch of an RT level design that is par-
titioned into its data and control parts. We will use this diagram to dis-
cuss the two partitions and at the same time show how Verilog may be
used for describing an RTL circuit.

2.1.2 Data part

The data part of an RTL design consists of the interconnection of data
components that are, registers, combinational logic units, register files,
and busses that interconnect them. The data part, which we also refer
to as the data path, has external data inputs and outputs, as well as con-
trol inputs and outputs from and to the control part. Figure 2.2 shows
partial code of the data part of Fig. 2.1 described in Verilog. This par-
tial code shows ports of the DataPath module and indicates that within
this module various data components are specified. Control signals are
inputs to the data part and are sent to the data components and busses.
This code shows the module header including its name and its ports.
Following the header, inputs and outputs, and their dimensions are
declared. Texts that are followed by // are comments.

A data component has certain control signals that control its clocking
and/or its functionalities.

16 Chapter Two

RT Level Design

Flags & status

Opcode
Data flow

Control signals

ControlDataPath

Reg

Data Inputs

Data Outputs

Control

Outputs

Control

Inputs

Figure 2.1 Control/Data Partitioning

A module describing a typical data component shows how the com-
ponent uses its input control signals to perform various operations on
its data inputs. Figure 2.3 shows a partial code of a data component.

Busses in the data part of an RTL design have control signals that
select their sources and routing of data from one data component to
another. The data part has output signals going to the control part that
provide flags and status of the data.

2.1.3 Control part

The control part of an RTL design takes control inputs from the data part
and external control inputs and depending on its state makes decisions
as to when and what control signals to issue.

The control part, which we also refer to as the control unit, consists of
one or more state machines that keep the state of the circuit, make deci-
sions based on the current data and data status, and control how data
is routed and what operations are performed on the data in the data part.

Register Transfer Level Design with Verilog 17

module DataPath
(DataInput, DataOutput, Flags, Opcodes, ControlSignals);

input [15:0] DataInputs;
output [15:0] DataOutputs;
output Flags, ...;
output Opcodes, ...;
input ControlSignals, ...;
// instantiation of data components
// ...
// interconnection of data components
// bussing specification

endmodule

Figure 2.2 DataPath Module

module DataComponent (DataIn, DataOut, ControlSignals);
input [7:0] DataIn;
output [7:0] DataOut;
input ControlSignals;
// Depending on ControlSignals
// Operate on DataIn and
// Produce DataOut

endmodule

Figure 2.3 Partial Verilog Code of a Data Component

Partial Verilog module of Fig. 2.4 shows an outline of tasks handled
by the control unit of an RTL design.

2.2 Elements of Verilog

Constructs of the Verilog language are designed for describing hardware
modules and primitives. This section presents basic constructs of the
language for describing a hardware module.

2.2.1 Hardware modules

The Verilog hardware description language (HDL) is used to describe
hardware modules of a system and complete systems. Therefore, the
main component of the language, which is a module, is dedicated for this
purpose. As shown in Fig. 2.5, a module description consists of the key-
word module, the name of the module, a list of ports of the hardware
module, the module functionality specification, and the keyword end-
module. Following a module name and its list of ports, usually variables,
wires, and module parameters are declared. After the declarations, state-
ments in a module specify its functionality. This part defines how output
ports react to changes on the input ports.

18 Chapter Two

module ControlUnit
(Flags, Opcodes, ExternalControls, ControlSignals);

input Flags, ...;
input Opcodes, ...;
input ExternalControls, ...;
output ControlSignals;
// Based on inputs decide :
// What control signals to issue,
// and what next state to take

endmodule

module module-name
List of ports;
Declarations
...
Functional specification of module
...

endmodule

Figure 2.4 Outline of a Controller

Figure 2.5 Module Specifications

As in software languages, there is usually more than one way a module
can be described in Verilog. Various descriptions of a component may cor-
respond to descriptions at various levels of abstraction or to various levels
of detail of the functionality of a module. One module description may be
at the behavioral level of abstraction with no timing details, while another
description for the same component may include transistor-level timing
details. Amodule may be part of a library of predesigned library components
and include detailed timing and loading information, while a different
description of the same module may be at the behavioral level for input to
a synthesis tool. It must be noted that descriptions of the same module need
not behave in exactly the same way nor is it required that all descriptions
describe a behavior correctly. In a fault simulation environment, faulty
modules may be developed to study various failure forms of a component.

In the sections that follow we show a small example and several alter-
native ways it can be described in Verilog. This presentation is to serve
as an introduction to various forms of Verilog constructs for the descrip-
tion of hardware.

2.2.2 Primitive instantiations

Verilog uses different constructs for describing a module with different
levels of detail. Verilog basic logic gates are called primitives and for
describing a component using these primitives, a construct called prim-
itive instantiation is used. See for example the multiplexer of Fig. 2.6
that is made of AND and OR gates. This structure can be described in
Verilog as shown in Fig. 2.7.

Register Transfer Level Design with Verilog 19

a

s
b

a_sel

ws_bar

b_sel

Figure 2.6 A Multiplexer Using
Basic Gates

module MultiplexerA (input a, b, s, output w);
wire a_sel, b_sel, s_bar;
not U1 (s_bar, s);
and U2 (a_sel, a, s_bar);
and U3 (b_sel, b, s);
or U4 (w, a_sel, b_sel);

endmodule

Figure 2.7 Primitive Instantiations

The first line of this code contains the name of the module, MultiplexerA,
and its input and output ports. Following this line, intermediate wires are
declared. The rest of this code consists of instantiation of not, and, and or
gates. These instantiations are done according to the diagram of Fig. 2.6,
and their wirings are as indicated in this diagram.

2.2.3 Assign statements

Instead of describing a component using primitive gates, boolean expres-
sions can be used to describe the logic, and Verilog assign statements
can be used for assigning results of these expressions to various outputs.
Our simple multiplexer example can be described as shown in Fig. 2.8.

The statement shown in the body of the MultiplexerB module con-
tinuously drives w with its right-hand side expression.

2.2.4 Conditional expression

In cases where the operation of a unit is too complex to be described by
boolean expressions, conditional expressions can be used. Our multi-
plexer example is described in Fig. 2.9 using an assign statement and
a conditional operation.

Because conditional expressions mimic if-then-else behavior of software
languages, they are very effective in describing complex functionalities.
Furthermore, the nesting capability of the conditional operator makes
it useful in describing a behavior in a very compact way.

2.2.5 Procedural blocks

In cases where the operation of a unit is too complex to be described by
assignment of boolean or conditional expressions, higher-level procedural

20 Chapter Two

module MultiplexerB (input a, b, s, output w);
assign w = (a & ~s) | (b & s);

endmodule

Figure 2.8 Assign Statement and Boolean

module MultiplexerC (input a, b, s, output w);
assign w = s ? b : a;

endmodule

Figure 2.9 Assign Statement and Condition Operator

constructs should be used. Verilog’s main construct for procedural spec-
ification of hardware is the always statement used in the example of
Fig. 2.10.

The example shown in Fig. 2.10 is still another Verilog code for our
multiplexer example discussed previously. In this code, an always state-
ment, which is the main procedural body of Verilog, encloses an if-else
statement that assigns a or b to w depending on the value of s.

2.2.6 Module instantiations

Still another way of describing a component is by describing its sub-
components and instantiating and wiring these lower-level components
to form the intended upper-level design. Verilog’s construct for this
application is called module_instantiation, an example of which is shown
in Fig. 2.11.

In this Figure, module ANDOR is first defined. Then in MultiplexerE,
the four-input ANDOR module and an inverter are instantiated to form
the intended 2-to-1 multiplexer. The diagram of Fig. 2.12 corresponds
to the Verilog code of Fig. 2.11.

Register Transfer Level Design with Verilog 21

module MultiplexerD (input a, b, s, output w);
reg w;
always @ (a, b, s) begin

if (s) w = b;
else w = a;

end
endmodule

Figure 2.10 Procedural Statement

module ANDOR (input i1, i2, i3, i4, output y);
assign y = (i1 & i2) | (i3 & i4);

endmodule
//
module MultiplexerE (input a, b, s, output w);

wire s_bar;
not U1 (s_bar, s);
ANDOR U2 (a, s_bar, s, b, w);

endmodule

Figure 2.11 Module Instantiation

2.3 Component Description in Verilog

As discussed in Sec. 2.1, an RT level design consists of data and control
parts. The data part consists of instantiation and wiring of various data
components. With the brief introduction to Verilog in the previous sec-
tion, we are now ready to take a longer step towards giving an overview
of this language, by describing simple RT level components.

2.3.1 Data components

Data components generally consist of multiplexers for bus specifica-
tions, registers for data storage, flip-flops for flags, and combinational
logic units for arithmetic and/or logical operations on data. In what fol-
lows, we will show small examples illustrating how such components are
coded in Verilog.

2.3.1.1 Multiplexer. As discussed in the previous section, there are many
ways a multiplexer can be described in Verilog. We use an assign state-
ment for describing an octal 2-to-1 multiplexer. The multiplexer selects
its 8-bit data0 or data1 inputs depending on its sel input. Figure 2.13
shows the Verilog code for this multiplexer.

As shown in Fig. 2.13, the name of the multiplexer module is Mux8. The
description begins with the `timescale directive. This directive defines
the module’s time unit. The 1ns/100ps used in this example indicates that

22 Chapter Two

i1
i2

i3
i4

y w

a

s

b

ANDOR

Figure 2.12 Multiplexer Using ANDOR

`timescale 1ns/100ps
module Mux8 (input sel, input [7:0] data1, data0,

output [7:0] bus1);
assign #6 bus1 = sel ? data1 : data0;

endmodule

Figure 2.13 Octal 2-to-1 Mux

all timing values are in ns, and the time precision is 100ps, or 0.1ns. This
means that we can specify time values with one fractional digit (0.1ns).
Following the ̀ timescale directive, the first line of the code specifies the
name of the module and its ports. Four input and output ports of Mux8
are named as sel, data1, data0, and bus1. The header also specifies the
size of module ports and their modes (input or output). For size specifi-
cation, Verilog uses square brackets enclosing a vector’s dimensions. Since
sel is a scalar, no size is specified for it, and one is assumed for its number
of bits. Following the header, other declarations such as intermediate
wires or timing parameters used in the module description must be
declared. Our Mux8 example does not require such declarations.

Following the declarations, the main body of a Verilog module describes
the operation of the module. In this part, a module may be described in
terms of its subcomponents, its register and bus structure, or its behav-
ior. In the Mux8 example, an assign statement is used to specify output
values for various input combinations. This statement specifies a 6-ns
delay for all values assigned to bus1. The right-hand side of this state-
ment selects data1 or data0 depending on whether the sel value is binary
1 or not. Signals, such as bus1, to which assigning is done are presumed
to be driven by their right-hand side at all times. Such signals are con-
sidered wire and do not need to hold any value.

2.3.1.2 Flip-flop. Flip-flops are used in the data part of a design for flags
and data storage. A multi-bit flip-flop is a register, of which the Verilog
style of coding is very similar to that of a flip-flop. Figure 2.14 show the
Verilog code of a 1-bit flip-flop with a synchronous reset input and a din
data input. The flip-flop triggers on the falling edge of its clk input.

As in Fig. 2.13, the first line in Fig. 2.14 specifies the time unit and its
precision. Also as in the description of Mux8, the first line after the module

Register Transfer Level Design with Verilog 23

`timescale 1ns/100ps

module Flop (reset, din, clk, qout);
input reset, din, clk;
output qout;
reg qout;
always @ (negedge clk) begin

if (reset) qout <= #8 1’b0;
else qout <= #8 din;

end
endmodule

Figure 2.14 Flip-Flop Description

definition in the Flop code specifies the input and output ports of the flip-
flop. In this example we are using a different format for declaration of
inputs and outputs of the Flop module. Declarations shown here specify
which ports are inputs and which are considered as outputs of the module.
An additional declaration specifies that qout is a signal that has the capa-
bility of holding its values. This becomes clearer in the following paragraph.

The part of the code in Fig. 2.14 that begins with the always keyword
specifies the values assigned to qout in response to changes of clk and
other flip-flop inputs. As specified by the statement following the @ sign,
the body of this always statement is executed at the negative edge of the
clk signal. At such times, if reset is true, qout receives 1'b0 (1-bit binary 0);
otherwise, qout receives din. Value assignments to qout take place only
on the negative edge of the clock. Therefore, in order for this output to
hold its value between clock edges, it has been declared as a reg.

Notice that the assignment to qout uses an arrow, while in the pre-
vious examples an = sign was used. This assignment is called a non-
blocking assignment and assignments using an equal sign are called
blocking. The use of nonblocking assignments in descriptions of sequen-
tial circuits is a usual practice in Verilog.

In all Verilog descriptions, a delay value is specified by an integer fol-
lowing a # sign. In Fig. 2.14, the 8 ns delay value specified on the right-
hand side of assignments to qout specifies the time delay between
evaluation of the right-hand side expression and its assignment to qout.

A software-like procedural coding style is used for describing the Flop
model. In this description we are only concerned with assigning appro-
priate values to circuit outputs. Neither the structure of the circuit nor
the details of the hardware in which data flows are of any concern.

2.3.1.3 Counter. Counters are used in the data part of an RTL design
for registering data, accessing memory, or queues and register stacks.
Figure 2.15 shows Verilog code for a 4-bit modulo-16 counter. The counter
has a synchronous reset and a 4-bit count output. With every negative edge

24 Chapter Two

`timescale 1ns/100ps

module Counter4 (input reset, clk, output [3:0] count);
reg [3:0] count;
always @ (negedge clk) begin

if (reset) count <= #3 4’b00_00;
else count <= #5 count + 1;

end
endmodule

Figure 2.15 Counter Verilog Code

of the clk input, the counter counts up one place. When the counter reaches
1111, it rolls back and starts counting from 0000 with the next clock edge.

The Verilog code for the counter begins with the module name and port
list. Input and output declarations as well as declaration of count as a
4-bit reg follow the module heading. The signal count is to hold values
between activations of assignment of values to this signal, and there-
fore it is declared as reg. This variable keeps the count of our up-counter
at all times. As in the description of Flop, an always statement that
becomes active on the negative edge of clk encloses the statements spec-
ifying the behavior of the counter. Following the keyword begin that fol-
lows this statement, an if-else statement increments count if reset is not
active. The else part of this statement, that is taken when reset is not
active, increments count by 1. When count reaches 1111, the next count
taken, by treating count as an unsigned number, is 10000. However,
since the left-hand side of count+1 is the 4-bit count variable, Verilog
truncates the next count to 0000. This is why when count reaches its
upper limit, it rolls back to 0.

The description of Fig. 2.15 shows a delay of 3 ns when count is reset
and a delay of 5 ns when this variable is incremented. As discussed,
delay values are numbers that follow the sharp-sign (#) symbol. As in
the case of the flip-flop example, nonblocking assignments are used for
assignment of values to register outputs.

2.3.1.4 Full adder. In the data part of an RT level design, full adders
are used for building carry-chain adders. A full adder is a combinational
circuit with two data inputs (a and b) and one carry input (cin). The out-
puts of this circuit are sum and carry-out (cout). Figure 2.16 shows the
Verilog code for this circuit. As shown, the body of full_adder module
encloses two assign statements for sum and cout outputs of the circuit.
Each statement represents a logic block driving the corresponding left-
hand side output signal. All changes on sum occur after 5 ns from the
time that one of its inputs change. Similarly, changes on cout occur after
3 ns from the time that a, b, or cin change. Because we are only using
one delay value for every output, the specified value is considered as tPLH

(low-to-high propagation time), and tPHL (high-to-low propagation time).

Register Transfer Level Design with Verilog 25

`timescale 1ns/100ps

module full adder (input a, b, output sum, cout);
assign #5 sum = a ^ b ^ cin;
assign #3 cout = (a & b)|(a & cin)|(b & cin);

endmodule

Figure 2.16 Full adder Verilog Code

In our example we are using two assign statements in the statement
part of the full_adder module. This part of a module is considered as a
concurrent body of Verilog. The order of statements in this section is not
important and all statements are sensitive to their sensitivity list, mean-
ing that they execute when an event occurs on any of their right-hand
side signals. Sensitivity lists are discussed further on.

2.3.1.5 Shift-register. Another structure that is used as a data compo-
nent is a register with or without various shift capabilities. Here we
show a shift-register with two mode inputs m[1:0] that form a 2-bit
number. When m is 0, the shifter does nothing (retains its old value),
for values of m = 1 and m = 2 it shifts its contents right and left, respec-
tively, and for m = 3 it loads its parallel inputs into the register. This
latter mode is its normal register mode.

Figure 2.17 shows the Verilog code for this shift-register. As with
other examples we have discussed, inputs and outputs of this circuit are
declared in the upper part of the module. The mode input is m and is
declared as a 2-bit vector. The shift-register parallel data input and
output are 8 bits.

The four modes of operation of this circuit are handled inside an
always block by a case statement with four case alternatives. The last
case alternative defaults to all values not specified before it.

The actual shifting of the contents of the shift-register is done by the
use of the concatenation operator that uses a pair of curly brackets for
concatenating all the bits that it is bracketing. For shifting ParOut to
the right, the serial left input (sl) is concatenated to the left of bits 7 to 1
of ParOut. This way, sl moves into position 7 of ParOut and bits 7 down

26 Chapter Two

`timescale 1ns/100ps

module ShiftRegister8 (input sl, sr, clk, input [7:0] ParIn,
input [1:0] m, output reg [7:0] ParOut);

always @ (negedge clk) begin
case (m)

0: ParOut <= ParOut;
1: ParOut <= {sl, ParOut [7:1]};
2: ParOut <= {ParOut [6:0], sr};
3: ParOut <= ParIn;
default: ParOut <= 8’bX;

endcase
end

endmodule

Figure 2.17 An 8-bit Universal Shift Register

to 1 move into positions 6 down to 0 of this register. Similarly, for shift-
ing ParOut to the left, the serial right (sr) input is concatenated to the
right of bits 6 down to 0 of this register. This causes sr to be clocked in
bit 0 of ParOut, and ParOut[6:0] to be clocked into ParOut[7:1], caus-
ing a left shift of this register.

2.3.1.6 ALU. In our next example of an RT level component, we discuss
the Verilog coding of an 8-bit 4-function arithmetic and logic unit (ALU).
ALUs with various functionalities are used in the data parts of many
RTL designs for performing arithmetic and/or logical operations on their
vector inputs.

Our ALU example here has a 2-bit mode input that selects one of its
four (add, subtract, AND, and OR) functions. The mode input takes
values 0, 1, 2, or 3 to specify the function performed by the ALU.

The Verilog code of this example is shown in Fig. 2.18. The inputs and
outputs of the ALU are declared in the module header. The input [7:0]
declaration applies to all signals that follow it, up to the next declara-
tion. Therefore, this declaration applies to left and right inputs of ALU.
Also shown in the header of the module, is the declaration of ALUout
both as output and as reg. Since we will be assigning ALUout within
a procedural block the reg declaration is required. Following the module
header, an always statement that encloses a case statement describes
the ALU. The signals enclosed in parenthesis following the @ sign, which
follows the always keyword, are referred to as the sensitivity list of the
always block. This means that an event on any of these signals causes
the always statement to execute once. Because ALU8 is a combinational
circuit, all its inputs must appear in the sensitivity list of the always

Register Transfer Level Design with Verilog 27

`timescale 1ns/100ps

module ALU8 (input [7:0] left, right, input [1:0] mode,
output reg [7:0] ALUout);

always @(left, right, mode) begin
case (mode)

0: ALUout = left + right;
1: ALUout = left - right;
2: ALUout = left & right;
3: ALUout = left | right;
default: ALUout = 8’bX;

endcase
end

endmodule

Figure 2.18 An 8-bit ALU

block that describes it. The case statement in the body of the always
statement is similar to that used in the shift-register example.
Assignments made to ALUout are of the blocking type (using an equal
sign) that is a common practice in Verilog for assignments made to non-
register outputs. Finally the default alternative puts all Xs on ALUout
if mode contains anything but 1s and 0s. The 8’bX format translates to
binary X expanded to 8 bits.

2.3.1.7 Interconnections. Many data path components and the wiring
of the complete data part itself require lower-level component inter-
connections. To illustrate Verilog mechanism for this, we use our Mux8
and ALU8 examples to form the partial hardware shown in Fig. 2.19.

The partial hardware shown selects Aside or Bside depending on
select_source and puts it on the ABinput side of the ALU (this is con-
nected to the actual ALU8 right port). The Inbus, which is a local signal
in the scope of this partial hardware, is connected to the left input of
ALU8. The ALU output (ALUout) connects to Outbus in this hardware,
and its mode input connects to the local 2-bit function signal. The par-
tial Verilog code of Fig. 2.20 is the code that corresponds to the diagram
of Fig. 2.19.

28 Chapter Two

BsideAsideInbus

select_source

ABinput

Function

Outbus

8

8 8

8

8

Figure 2.19 Partial Hardware
Using Mux8 and ALU

ALU8 U1 (.left(Inbus), .right(ABinput),
.mode(function), .ALUout(Outbus));

Mux8 U2 (.sel(select_source),
.data1(Aside), .data0(Bside));

Figure 2.20 Partial Verilog code of Fig. 2.19

This partial code shows interconnections described above. ALU8 and
Mux8 modules are instantiated and U1 and U2 instance names are
used for these modules. Following instance names, sets of parenthesis
enclose port connections to the instantiated modules. The port connec-
tion format shown here begins with a dot (.), followed by the name of the
actual port of the module, and then it is followed by a set of parenthe-
sis that encloses the expression or local signal that connects to the
named port. An alternative port connection (shown in Fig. 2.21) format
is to exclude the actual ports of the instantiated components and only
list the local signals in the same order as their connecting ports.

2.3.2 Controllers

Data components are put together in the data part of an RT level design,
and the controller is wired to the data part to control its flow of data.
Controllers can be as easy as one flip-flop, handshaking handlers, or as
complex as several concurrent state machines. Figure 2.22 shows an out-
line of a controller circuit. The inputs to the controller determine its next
states and its outputs. The controller monitors its inputs and makes deci-
sions as to when and what output signals to assert. Controllers keep past
history of circuit data by switching to appropriate states.

Register Transfer Level Design with Verilog 29

ALU8 U1 (Inbus, ABinput, function, Outbus);
Mux8 U2 (select_source, Aside, Bside);

Figure 2.21 Ordered Port Connection

Issue Control Signal

Go to Next State

Decisions
Based on: Inputs,

Outputs, State

Set Next State

Figure 2.22 Controller Outline

This section presents two examples to illustrate some of the features
of Verilog for describing state machines.

2.3.2.1 Synchronizer. When inputs to a clocked circuit are generated by
a system that is run by a different clock, or by an external asynchronous
circuit, a synchronizer is used to synchronize incoming data with a
given clock. Figure 2.23 shows an asynchronous data signal (adata) and
an output that is synchronized with the positive-edge of the clk signal.

Figure 2.24 shows the Verilog module for generating the synched signal
of Fig. 2.23. The module header declares inputs and outputs of this circuit,
and within this module an always block handles the synchronization. As
shown, the flow into the always block begins when the positive edge of
clk is detected. At this time if adata is 0, the output synched signal remains
0 for the next clock period. If a 1 is detected on adata on the rising edge
of the clock, synched becomes 1 and remains 1 for at least one clock period,
at which time it may be set to 0 if adata is 0. Since the flow into the
always block only begins on the rising edge of the clk, it is guaranteed that
changes of synched only occur with this clock edge. The description shown
assumes that only 0 and 1 values can appear on the adata input.

2.3.2.2 Sequence detector. While being simple in description and func-
tionality, a sequence detector is a good representation for the general
class of controllers. In other words, sequence detectors are simplified con-
trollers. Instead of many inputs and outputs, sequence detectors have one
or two input and output lines, and instead of complex decision makings

30 Chapter Two

Clk

adata

synched

Figure 2.23 Synchronizing adata

`timescale 1ns/100ps

module Synchronizer (input clk, adata, output reg synched);
always @ (posedge clk)

if (adata == 0) synched <= 0; else synched <= 1;
endmodule

Figure 2.24 A Simple Synchronization Circuit

and input conditions, sequence detectors generally search for a sequence
of 1s and 0s on their input. We will present a Verilog description for the
simple sequence detector shown in Fig. 2.25.

A Moore machine sequence detector, the pseudo-code of which is shown
in Fig. 2.27, searches on it’s a input for the 110 sequence. When this
sequence is detected in three consecutive clock pulses, the output (w)
becomes 1 and stays 1 for a complete clock cycle. The state machine for
this detector is shown in Fig. 2.26. States of the machine are named s0,
s1, s2, and s3. The s0 state is the reset state and s3 is the state in which
the 110 sequence is detected. The reset input of this machine resets it
to its s0 state. Starting in this state, it takes at least three clock peri-
ods for the machine to get to the s3 state, in which output becomes 1.

The Verilog behavioral description of this machine is shown in Fig. 2.27.
The list of ports are a, clk, reset, and w. A parameter declaration in this
description defines constants s0, s1, s2, and s3 to be used for the names of
the states of this machine. Assigning binary values assigned to these
parameters, can be regarded as making state assignments.

The two-bit reg declaration declares current as the variable that
holds the current state of the machine. This variable corresponds to a
2-bit register, which represents the state variables of this machine.

The main flow of the state machine is implemented by an always
block that is sensitive to the positive edge of the clock. In this statement
an if-else statement checks for reset, and in case of the absence of a 1
on this inputs, state transitions are taken care of by a case statement.

Register Transfer Level Design with Verilog 31

clk

a
If 110 is detected
on a, then w gets
1, else w gets 0.

W

Figure 2.25 State Machine Description

01

1

1

0

0

1

0reset

S0
0 0

S1

0

S2

0

S3

Figure 2.26 Sequence Detector State Machine

The four case alternatives of the case statement each correspond to a
state of the state machine. Figure 2.28 shows state s2, its next state, and
the corresponding Verilog code in the always block of Fig. 2.27.

The body of the Detector110 module has an assign statement that
assigns a 1 to the w output when the machine reaches the s3 state. This
statement is outside of the always block and represents a combinational

32 Chapter Two

`timescale 1ns/100ps

module Detector110 (input a, clk, reset, output w);
parameter [1:0] s0=2’b00, s1=2’b01, s2=2’b10, s3=2’b11;
reg [1:0] current;

always @ (posedge clk) begin
if (reset) current = s0;
else

case (current)
s0: if (a) current <= s1; else current <= s0;
s1: if (a) current <= s2; else current <= s0;
s2: if (a) current <= s2; else current <= s3;
s3: if (a) current <= s1; else current <= s0;
endcase

end

assign w = (current == s3) ? 1: 0;

endmodule

Figure 2.27 Verilog Code for 110 Detector

a=0

s0

0

s2

0

s1

0

a=1

s1:

if (a)

current <= s2;

else

current <= s0;

Figure 2.28 State Transitions and Corresponding
Verilog Code

circuit that drives the w output. This statement runs concurrent with
the always block and is evaluated every time current changes.

2.4 Testbenches

Although the main application of Verilog is accurate representation of
hardware for simulation and synthesis, we cannot ignore the role of
testing our designs for design and functional verification. Verilog has lan-
guage constructs for application of test data to a design, as well as con-
structs for monitoring responses a circuit generates.

2.4.1 A simple tester

We develop a simple test bench for our Detector110 example of the pre-
vious section to illustrate the kinds of Verilog constructs used for this
purpose.

As shown in Fig. 2.29, like any other Verilog description a testbench
description begins with the module keyword. Unlike other descrip-
tions, a testbench does not have input or output ports. In the body of the
module shown, variables that are input to our unit under test (UUT) are
declared as reg and its outputs are declared as wire. The testbench
shown instantiates the Detector110 module and uses UUT for its
instance name. Connections of aa, clock, rst, and ww local signals to the

Register Transfer Level Design with Verilog 33

`timescale 1ns/100ps

module Detector110Tester;
reg aa, clock, rst;
wire ww;
Detector110 UUT (aa, clock, rst, ww);
initial begin

aa = 0; clock = 0; rst = 1;
end
initial repeat (44) #7 clock = ~clock;
initial repeat (15) #23 aa = ~aa;
initial begin

#31 rst = 1;
#23 rst = 0;

end
always @ (ww) if (ww == 1)

$display (“A 1 was detected on w at time = %t”, $time);
endmodule

Figure 2.29 Testbench for Detector110

ports of Detector110 are done according to the order in which these ports
appear in the port list of the detector circuit.

We are using initial statements to drive test values into the variables
that are connected to the inputs of the detector. An initial statement
is a procedural statement that runs once and stops when it reaches its
last statement. All initial blocks in a module, start at time 0 and run
concurrently.

In the body of our testbench, an initial statement is used for initializ-
ing the input signals. Following this statement, another initial statement
repeats 44 times of complementing the clock input with 7 ns delay values.
This generates a periodic signal on clock. Signal aa is also assigned a peri-
odic signal, but with a different frequency. The last initial statement
shown waits 31 ns before assigning a 1 to rst and another 23 ns before
assigning a 0 to this variable. This is intended to cover several clock
edges in order to reset the machine.

The last statement in the body of the Detector110tester module is an
always statement that reports the times at which the ww variable
becomes 1. Recall that this variable is connected to the output of our
sequence detector. The always block wakes up when ww changes. If the
change on ww has caused it to become 1, a statement displaying a note
and the time of occurrence of ww will be issued. This note will appear
in the simulation environment’s window that is often referred to as the
“console” or “transcript”. The $display task is a Verilog system task.

2.4.2 Tasks and functions

The testbench of Fig. 2.29 shows utilization of the $display system task.
In addition to system tasks for input, output, display, and timing checks,
Verilog allows definition and utilization of user defined tasks and functions.

A task can represent a sub module within a Verilog module. A task
begins with the task keyword and for its header uses a format that is
very similar to that of a module. The body of a task can only consist of
procedural statements like if-else and case.

Functions can also be used for corresponding to hardware entities, or
they may be used for writing structured codes, in much the same way as
they are used in software languages. Typical applications of functions
include representation of boolean functions, data and code conversion,
and input and output data formatting. Generally, any time the final value
of a process is used on the right-hand side of an expression, a function can
be used to simplify the expression.

2.5 Summary

This chapter gave an overview of Verilog and its use for design and test
of RT level description. After discussing components of an RT level
design, we used small examples to illustrate such components and at the

34 Chapter Two

same time showed Verilog coding of hardware modules. The descriptions
presented in this part were all synthesizable and had a one-to-one hard-
ware correspondence. To make the discussion of the language complete,
and show alternatives of the use of this language in a design, we showed
how testbenches could be developed in Verilog. In this part several new
constructs of Verilog were presented.

Problems

2.1 Write a behavioral description for a 4-to-1 multiplexer. The multiplexer has
s1 and s0 select inputs and four data inputs.

2.2 Using an assign statement describe a majority circuit with three inputs
and one output. When the majority of the inputs are 1, the output of the majority
circuit becomes 1.

2.3 Write a Verilog description for a 101 sequence detector with an a input and
a w output.

2.4 Write a testbench for the 101 detector of Prob. 2.3. Make sure you apply
an input sequence to make the output become 1.

Suggested Reading

IEEE Std 1364-2001, IEEE Standard Verilog Language Reference Manual, SH94921-
TBR (print) SS94921-TBR (electronic), ISBN 0-7381-2827-9 (print and electronic),
2001.

Navabi, Z., “Digital Design and Implementation with Field Programmable Devices”,
Kluwer Academic Publishers, Boston, MA, 2005, ISBN: 1-4020-8011-5.

Navabi, Z., “Verilog Computer-Based Training Course”; CBT CD with hardcopy User’s
manual, McGraw-Hill, New York, 2002 ISBN 0-07-137473-6.

Register Transfer Level Design with Verilog 35

This page intentionally left blank

Chapter

3
Verilog Language Concepts

Because Verilog is a language for description of hardware, it has features
that are conceptually different from those of software languages. Two
main features that characterize hardware languages are timing and con-
currency. Timing is associated with values that are assigned to hardware
carriers, while concurrency refers to simultaneous operation of various
hardware components. Because of these features, data types and opera-
tors take new definitions in hardware languages and must be looked at
differently from those of software languages. This chapter defines timing
and concurrency and then it discusses Verilog language constructs that
make it an efficient language for design and test of hardware modules.

3.1 Characterizing Hardware Languages

Timing and concurrency are the main characteristics of hardware
description languages. These features are instrumental in the correct
description of hardware components at various levels of abstraction.

3.1.1 Timing

Transfer of values between hardware components or within a component
is done through wires or busses. Variables in Verilog may be used for
representation of actual wires, and because of delays associated with the
transfer of values through wires, variable assignments in Verilog can
include timing specification. Consider, for example, the AND-OR circuit
of Fig. 3.1. This circuit can be simply described by a boolean equation
as shown below. (Note that, & is AND, | is OR, and ~ is NOT).

assign w1 = a & b | a & ~b;

37

Copyright © 2006 by The McGraw-Hill Publishing Companies, Inc. Click here for terms of use.

The problem with this representation is that it does not consider gate
delays, and glitches that may appear on w due to different delay paths
from b to w. These delays and glitches will not be seen on the output of
this expression (w1).

For a more accurate representation of this circuit, assignments that
incorporate timing as well as value assignments must be used. Verilog
allows the use of gate and wire delays for this purpose. The partial code
shown below is a more accurate representation of Fig. 3.1.

assign #6 n = ~b;
assign #3 m = a & b;
assign #3 p = n & c;
assign #2 w2 = m | p;

An assign statement drives the signal on the left-hand side of the
equal sign with the boolean expression on its right. A sharp-sign (#) fol-
lowed by a number specifies the delay of the left-hand side signal.

Although this description is more complex than the previous repre-
sentation of this circuit, it represents details of the timing behavior
that the single assign statement does not. For example, consider the
waveform shown in Fig. 3.2. When b changes from 1 to 0 the final value
of the circuit output remains at 1. However, because of the inverter
delay in forwarding a 1, a 6 ns glitch appears on this output.

38 Chapter Three

w

a

b

c p

m

Td = 3 ns

Td = 2 ns

Td = 6 ns

n

Td = 3 ns

Figure 3.1 An AND-OR circuit

Figure 3.2 Output Glitch

As shown in this figure, w1, which is the result of the single assign
statement, does not show the delay, while w2 shows both propagation
delays and glitches that may occur on the w output of circuit of Fig. 3.1.

From the above discussion, we conclude that accurate representation
of hardware requires handling of timing, and a language for modeling
hardware must have constructs for doing so. The Verilog HDL allows
many schemes for incorporating timing into description of hardware.
Constructs of this language are tailored to have such timing specifications.

3.1.2 Concurrency

Like timing, concurrency is an essential feature of any language for descrip-
tion of hardware. When a software programmer develops code for per-
forming a certain task, he or she thinks of this task in a sequential manner.
The software developed this way will have a top down sequential flow. On
the other hand, when a hardware designer or modeler is to describe a hard-
ware system, he or she thinks of this hardware as interconnections of com-
ponents. The functionality of the overall system is achieved by concurrently
active components communicating through their input and output ports.
The functionality of each component may be described by concurrent sub-
components or described by a program in a sequential manner.

We refer to concurrency as the way the simulation of components or
constructs appears to the user. Obviously, Verilog is a language for
which simulators have been developed on single-processor platforms,
and true concurrency in the execution of thousands of components
cannot exist. Through the use of concurrent constructs, timing of inter-
connecting signals, and order of simulation of constructs or components,
a Verilog simulator makes us (the users) think that such execution is
being done concurrently.

Going back to our example of the AND-OR circuit, the gates of the cir-
cuit of Fig. 3.1 are concurrently active. This means that we cannot
decide on a pre-determined order in which these gates perform their
operations. Instead, while hand simulating this circuit, we evaluate a
gate only when its input changes. Similarly, the four assign statements
that we discussed for representing this circuit are regarded as concur-
rent. The order in which these statements appear in a concurrent body
of Verilog is not important. As in its corresponding hardware, each state-
ment only evaluates its boolean expression when an event occurs on one
of its right-hand side signals.

For example, if the assign statement driving w2 appears first in the
list of statements shown, the result will be no different than if it appears
last, as it is now. In Verilog, the body of a module is referred to as a con-
current body, and encloses statements that are concurrently active.

Although individual hardware components of a system are concur-
rent, for describing behavior of a component, it is sometimes easier for

Verilog Language Concepts 39

designers to describe them behaviorally in a procedural fashion. For this
reason, Verilog allows the use of procedural blocks that can enclose pro-
cedural statements like if-else and case statements.

3.1.3 Timing and concurrency example

As an example of a design that uses concurrent statements with timing,
consider the full-adder description of Fig. 3.3. The module header declares
inputs and outputs of this circuit and in the concurrent body of the module
two assign statements drive s (sum) and co (carryout) outputs of this cir-
cuit. The s and co outputs have 3 ns and 4 ns propagation delays respec-
tively. When an input changes, e.g., a, the right-hand sides of both
expressions are evaluated. The new value of s is scheduled into this output
for 3 ns later, and that of co for 4 ns. Because of the delay values, if an
input change causes both outputs to change, s changes before co does, even
though the assign statement of co appears before that of s.

As an example of a procedural body of Verilog consider the testbench
of the Full_adder module shown in Fig. 3.4. After declaration and ini-
tialization of variables, wires, and constants, the body of this module
uses an instantiation statement to instantiate the full adder that is the
module under test. Following this statement, and concurrent with it, an
always block applies test data to the ports of the circuit being tested.

An always block is a concurrent structure on the outside, but has a
procedural body. In the body of this block an if-statement checks the sim-
ulation time and if it exceeds tlimit it stops the simulation. If the time
has not reached this limit, in a sequential flow, after a wait of 17 ns input
a is complemented. This is followed by a wait of 13 ns and a wait of
19 ns before complementing ci and b inputs. After new values have
been given to the inputs of Full_adder, the always block returns to its
beginning and repeats its process. For this example, this process stops at
539 ns, allowing 11 iterations.

This example has shown how timing is used in a procedural body of
Verilog. Procedural bodies are used for description of testbenches or for
describing a hardware component whose behavior is too complex to be
described with simple boolean equations.

40 Chapter Three

`timescale 1ns/100ps

module Full_adder (input a, b, ci, output co, s);
assign #4 co = a & b | a & ci | b & ci;
assign #3 s = a ^ b ^ ci;

endmodule

Figure 3.3 Full adder Concurrent Description

3.2 Module Basics

The previous section discussed some of the main concepts of the Verilog
language. To prepare for description of hardware, this section shows how
modules are developed, and how names, numbers, and operators are used.
We discuss conventions, lexical issues, and code formal in Verilog. The stan-
dard IEEE std 1364-2001 has a complete presentation of these topics.

3.2.1 Code format

Verilog code is free format, with spaces and new lines serving as sepa-
rators. Source text is case-sensitive, i.e., identifiers using lowercase or
uppercase characters are distinguished from each other. The language
uses certain keywords, all of which must use lowercase characters.

Comments may appear anywhere in a Verilog source text. A comment
designator starting with // makes the rest of the line, up to a new-line
character, a comment. The symbols /* and */ bracket a section of code
as a comment, and they go across new-line characters.

3.2.2 Logic value system

Bit type, or bits of vectors or arrays, of Verilog wires and variables take
the 4-value logic value system. Values in this system are 0, 1, Z, and X.

Verilog Language Concepts 41

`timescale 1ns/100ps

module FulladderTester;
reg a = 0, b = 0, ci = 0;
wire co, s;
parameter tlimit = 500;
Fulladder MUT (a, b, ci, co, s);
always begin

if ($time >= tlimit) $stop;
else begin

#17;
a = ~a;
#13;
ci = ~ci;
#19;
b = ~b;

end
end

endmodule

Figure 3.4 Full adder Tester Procedural Description

The 0 value represents forcing 0 like a direct pull to the ground, or a
resistive 0, or a capacitive 0. A resistive 0 is generated when there is a
large resistance between a line and a forcing 0 value. A capacitive 0 is
when a line is float; but has a capacitance that has a zero charge.

The 1 value represents forcing 1, resistive 1, and a capacitive 1. These
are defined similar to various modes of the 0 value. For example a forc-
ing 1 is defined as the logic value driven by a supply voltage.

The Z value represents an undriven, high-impedance value. This is
the electrical float which causes no current flow to either supply or
ground voltage. Both Z and z are acceptable forms of this logic value.

The X value represents a conflict in multiple driving values, an unknown,
an uninitialized value, a short between two opposing values (0 and 1), or
a bus contention. Driven wires and Verilog variables assume X for their ini-
tial values. Figure 3.5 shows several examples for the four values of Verilog’s
logic value system. Both X and x are acceptable forms of this logic value.

3.2.3 Wires and variables

Verilog has two main data types, net and reg. A net represents a wire
driven by a hardware structure or output of a gate. A reg represents a
variable that can be assigned values in a behavioral description of a
component in a Verilog procedural block. A later section on data types
elaborates on this topic.

3.2.4 Modules

A module is the main structure for definition of hardware components
and testbenches. Modules begin with the module keyword and end
with endmodule. Immediately following the module keyword, port list
of the module appears enclosed in parenthesis. Declaration of mode,
type, and size of ports can either appear in the port list or as separate
declarations. The example of Fig. 3.3 demonstrates the former method,
whereas in the FlipFlop description of Fig. 3.6 names only ports that are

42 Chapter Three

0
X 0

1
 0

 X0
1

1
x 1

0 :

1 :

Z or z :

X or x:

0

z1

Figure 3.5 Logic Values and
Examples

listed in the port list, and declared as separate input and output ports
inside the body of the FlipFlop module.

The body of a module consists of the specification of the operation of
the hardware the module is representing. The Full_adder of Fig. 3.3 is
described by two concurrent assign statements, while the FlipFlop of
Fig. 3.6 uses a single always procedural block to describe its operation.

A testbench module has no ports. It instantiates the module under
test (MUT) and through the use of concurrent statements or procedural
blocks applies data to the ports of MUT. Multiple modules can be tested
with the same testbench.

3.2.5 Module ports

Inputs and outputs of a module must be declared as input, output, or
inout. By default, all declared ports are regarded as nets, and the default
net type is used for the ports. For example, if defaults are not changed,
an input or an output automatically assumes the wire type net. Ports
declared as output may be declared as reg. This way they can be assigned
values inside procedural blocks. (e.g., in an always block). However, an
inout port can be used only as a net. To assign values to an inout port
in procedural bodies, a reg corresponding to the port must be declared
and used. Values of this reg type variable can then be assigned to the
inout port using a continuous assignments. For an output, a reg speci-
fication can follow the output keyword in the port list of the module.

3.2.6 Names

A stream of characters starting with a letter or an underscore forms a
Verilog identifier. The $ character and the underscore are allowed in an

Verilog Language Concepts 43

`timescale 1ns/100ps

module FlipFlop (preset, reset, din, clk, qout);
input preset, reset, din, clk;
output qout;
reg qout;
always @ (posedge clk) begin

if (reset) qout <= #7 0;
else if (preset) qout <= #7 1;
else qout <= #8 din;

end
endmodule

Figure 3.6 Separate Port Declarations Statements

identifier. A stream of special characters may be used as an identifier if
preceded by a backslash character. Verilog uses keywords that are all
formed by streams of lowercase characters. In our examples, we use bold
type for Verilog codes for keywords.

System tasks and functions are part of the Verilog standard. The
names of these utilities begin with a $ character. An example system
task is $display, which is used for formatted output. System tasks and
functions will be discussed later in this chapter.

The Verilog language defines a number of compiler directives that will
be discussed later. Compiler directive names are preceded by the ̀ (back
single quote) character. An example is the `timescale directive, which
defines the time unit for a Verilog code in a source text. The following
are valid names for identifiers.

aname , name1 , _name , Name ,
Name$, name55 , _55name , setup ,
_$name.

And, the following are Verilog keywords or system tasks.

$display default $setup
begin tri1 small

3.2.7 Numbers

Constants in Verilog are integer or real. Specification of integers can
include X (or x) and Z (or z) in addition to the standard 0 and 1 logic
values.

Integer formats provide various ways for representing bit streams.
Integers may be sized or unsized. A sized integer begins with the number
of equivalent bits, followed by the single quote character ('), a base speci-
fier, and the digits of the number in the specified base. The base specifier
is a single lower or uppercase character, b, d, o, or h for binary, decimal,
octal, and hexadecimal bases. The general format for integers is:

number_of_bits ‘base_identifier digits

Digits in the decimal (d) system are 0 through 9. For hexadecimal,
octal, and binary systems, in addition to their standard digits, X and Z
(both upper and lowercase) characters are also allowed. Hexadecimal
and octal X and Z digits expand to 4 or 3 bits of X and Z respectively. A
number without the number_of_bits specification is regarded as an
unsized number.

44 Chapter Three

Optionally, the base_identifier can be preceded by the single char-
acter S (or s) to indicate a signed quantity. A simple integer without the
base specification is treated as a signed number, whereas a number
that has its base specified is only treated as a signed number if the
optional s precedes its base specification. This designator does not
change bit pattern of a number, but only its interpretation.

A plus or minus operator can be used on the left of the number spec-
ification. A minus sign in this position is treated as a unary operator and
changes the sign of the number. The underscore character (_) can be used
anywhere in a number for grouping its bits or digits for readability pur-
poses. This and other formats described above are used in the examples
listed in Table 3.1.

More examples of constants are shown in Fig. 3.7. As shown, variables
a through l are declared and initialized. Following their initializations,
$displayb tasks display their binary values. Display results are shown
in the comments that follow the statements.

Real constants in Verilog use the standard format as described by
IEEE std 754-1985. This is the IEEE standard for double precision
floating-point numbers. Examples for real number representations are:
1.9, 2.6E9, 0.1e-6, 315.96-12.

Verilog Language Concepts 45

TABLE 3.1 Number Representation Examples

Number
representation Binary equivalent Explanation

4’d5 0101 Decimal 5 is interpreted as a 4-bit
number.

8’b101 00000101 Binary 101 is turned into an 8-bit
number.

12’h5B_3 010110110011 Binary equivalent of hex; underscore is
ignored.

-8’b101 11111011 This is the 2’s complement of the
number in the above example.

10’o752 0111101010 This is the octal 752 with a 0 padded to
its left to make it a 10-bit number.

8’hF 00001111 Hexadecimal F is expanded to 8 bits by
padding zeros to its left.

12’hXA xxxxxxxx1010 Hexadecimal XA is expanded to 12 bits
by extending the left X.

12’shA6 Signed This is an 8-bit number treated as a 2’s
111110100110 complement signed number.

-4’shA Signed 0110 The 2’s complement (because of the
minus sign) 4-bit A is regarded as a
signed number.

596 1001010100 This is a positive constant.

3.2.8 Arrays

Verilog allows declaration and usage of multidimensional arrays for
nets or regs. The following declares a_array as a two-dimensional array
of 8-bit words. This array contains 1024 × 512 8-bit words.

reg [7:0] a_array [0:1023][0:511];

In an array declaration, the address range (or ranges, for multi-
dimensional arrays) of the elements of the array comes (or come, for multi-
dimensional arrays) after the name of the array. Range specifications
are enclosed in square brackets. The size and range specification of the
elements of an array come after the net type (e.g., wire) or reg keyword.

46 Chapter Three

`timescale 1ns/100ps

module NumberTest;
reg [11:0] a = 8’shA6; initial $displayb (“a=”, a);
// a=111110100110
reg [11:0] b = 8’sh6A; initial $displayb (“b=”, b);
// b=000001101010
reg [11:0] c = ‘shA6; initial $displayb (“c=”, c);
// c=000010100110
reg [11:0] d = ‘sh6A; initial $displayb (“d=”, d);
// d=000001101010
reg [11:0] e = -8’shA6; initial $displayb (“e=”, e);
// e=000001011010
reg [11:0] f = -’shA6; initial $displayb (“f=”, f);
// f=111101011010
reg [11:0] g = 9’shA6; initial $displayb (“g=”, g);
// g=000010100110
reg [11:0] h = 9’sh6A; initial $displayb (“h=”, h);
// h=000001101010
reg [11:0] i = -9’shA6; initial $displayb (“i=”, i);
// i=111101011010
reg [11:0] j = -9’sh6A; initial $displayb (“j=”, j);
// j=111110010110
reg [11:0] k = 596; initial $displayb (“k=”, k);
// k=001001010100
reg [11:0] l = -596; initial $displayb (“l=”, l);
// l=110110101100

endmodule

Figure 3.7 Integer Constants

In the absence of a range specification before the name of the array, an
element size of one bit is assumed. Figure 3.8 shows several examples
of array and vector declarations and their corresponding graphical rep-
resentations. Array indexing will be discussed in a later section.

Verilog Language Concepts 47

 07

 Areg

7

0

 Amem

0

7

0

3

0

07

3

4

0
0

3

1
2

3

// An 8-bit vector
reg [7:0] Areg;

// A memory of 8 one-bit elements
reg Amem [7:0];

// A two-dimensional memory of one-bit elements
reg Bmem [7:0] [0:3];

// A memory of four 8-bit words
reg [7:0] Cmem[0:3];

// A two-dimensional memory of 3-bit elements
reg[2:0] Dmem [0:3] [0:4];

Bmem

Cmem

Dmem

Figure 3.8 Array structures

3.2.9 Verilog operators

Boolean operations are the most common type of operations for describ-
ing functions of hardware components at the gate or even RT level. In
addition, there are operations for the behavioral or functional description
of hardware. Most operations found in software languages, are also sup-
ported in Verilog. Figure 3.9 shows Verilog operators and a brief descrip-
tion of each.

Operators in Fig. 3.9 are grouped according to their functionalities. The
first group is the basic operators for arithmetic and relational operations.
These operations are very similar to those found in software languages.
The next group shows equality operators. An equality operator returns
a 1 or 0 resulting from comparison of its operators. The next group shows
boolean operators that are used for formation of conditions and for bit-
wise logical operations. Various shift operations constitute the next group
of operators. Concatenation and replication operators are listed next in
the table of Fig. 3.9. In the last part of this figure the conditional oper-
ation is shown. In the discussions that follow, after describing a group
of operators, several simple examples will be given.

3.2.9.1 Basic operators. Arithmetic operators in Verilog take bit, vector,
integer, and real operands. These operators that are +, −, *, /, and **,
result in multi-bit vectors. For the multiply operation, the size of the
result is determined by adding the bit lengths of the two operands. For
the other arithmetic operations, the size of the result is the maximum
of the bit lengths of the operands. An X or a Z value in a bit of either of
the operands causes the entire result of the multiply operation to become
unknown X.

Unary plus (+) and minus (−) are allowed in Verilog. These operators
take precedence over other arithmetic operators.

The modulus operation (%) results in the remainder of its first operand
when divided by its second operand. The sign of the result of a modu-
lus expression takes the sign of its first operand.

An expression using a relational operator results in a 0 if the speci-
fied relation is false or 1 if it is true. If any of the operands of a relational
operator contain an X or a Z, then the result becomes X. When two
vector operands of unequal bit lengths are being compared, the smaller
operand will be zero filled on the left to become the same size as the
larger-length operand. Several examples of basic operators are shown
in Table 3.2.

3.2.9.2 Equality operators. Equality operators are categorized into two
groups of logical and case. The logical group compare their operands for
equality (==) or inequality (!=), and return a one-bit result, 0, 1, or X.
An X ambiguity arises when an X or a Z occurs in one of the operands.

48 Chapter Three

On the other hand case-equality and case-inequality operators (===
and !==) consider X and Z values in comparing their operands. The
result of these operands is always 0 or 1. Examples of the use of these
operations are shown in Table 3.3.

Verilog Language Concepts 49

Figure 3.9 Verilog Operators

Basic OPERATION DESCRIPTION RESULT

 Relational

 Arithmetic

OPERATION DESCRIPTION RESULT

 Logical

 Case

 Equality

 Boolean OPERATION DESCRIPTION RESULT

 Logical

Bit-wise

 Reduction

 Concatenation

Replication

 Concat

 && !

 ~ & ^ ^~
 ~^

& ~& ~ ^
^~ ~^

Simple logic

Vector logic
operation

Perform operation
on all bits

One-bit

One-bit

One-bit

One-bit

One-bit

Equality
not including Z, X

Equality
 including Z, X

! =

!

 Multi-bit

One-bitcompare

Basic arithmetic+ – * / **

> >= < <=

Logical right

Logical left

Arithmetic right

Arithmetic left

OPERATION DESCRIPTION RESULTShift

>>n

<<n

>>>n

<<<n

Zero-fill
Shift n places

Zero-fill
Shift n places

 Multi-bit

Multi-bit

Multi-bit

Multi-bit

RESULT

Multi-bit

Multi-bit

OPERATION DESCRIPTION

{ }

{{ }}

Join bits

Join & replicate

 Concatenation

Condition RESULT

Multi-bit

OPERATION DESCRIPTION

? : If-then-else

3.2.9.3 Boolean operators. Operators performing boolean operations are
logical, bit-wise, and reduction. The logical boolean operators (&&, ||,
and !) are connectives used for formation of conditions. These operators
return one bit results, regardless of the size of their operands. The result
of the && operator is 1 if none of the operands is 0. The result of the ||
operator is 1 if at least one of the operands is non zero, and the ! oper-
ator complements its operand. If an X or a Z appears in an operand of
a logical operator, an X will result.

Bitwise operators consists of &, |, ^, ^~, and ~ for bitwise AND, OR,
XOR, XNOR, and NOT, respectively. For the XNOR operation, ~^ is also
a valid symbol. All bitwise operators operate on scalars and vectors. In
operations on vectors of differing sizes, the result becomes the larger of
the two vectors. All four values of the standard Verilog logic value system
are valid bit values for bitwise operators. Figure 3.10 shows the results
of bitwise operators operating on two 1-bit operands for four bitwise
operators. The complement operator ~, not shown in this figure, results
in 1 and 0 for 0 and 1 inputs and X for X and Z inputs.

A reduction operation is referred to as one that performs a certain bit-
wise operation on bits of a vector and reduces it by a single bit. There are
six reduction operations in Verilog. These operations are &, ~&, |, ~|, ^,
and ~^ (or ^~) for AND, NAND, OR, NOR, XOR, and XNOR. Applying a

50 Chapter Three

TABLE 3.2 Examples of Basic Operators

Example Results in

25 * 8’b6 150
25 + 8’b7 32
25 / 8’b6 4
22 % 7 1
81b10110011 > 8’b0011 1
4’b1011 < 10 0
4’b1Z10 < 4’b1100 X
4’b1x10 < 4’b1100 X
4’b1x10 <= 4’b1x10 X

TABLE 3.3 Examples of Equality Operators

Example Results in

8’b10110011 == 8’b10110011 1
8’b1011 == 8’b00001011 1
4’b1100 == 4’b1Z10 0
4’b1100 != 8’b100X 1
8’b1011 !== 8’b00001011 0
8’b101X === 8’b101X 1

reduction operator to a vector performs bitwise operations on a pair of bits,
starting in the least-significant position and repeating until all bits have
been covered. For every pair of bits, the table in Fig. 3.10 determines the
result of the operation. Complement reduction operations (~&, ~|, and ~^)
perform reduction first and then complement the result. Examples of log-
ical, bit-wise, and reduction operators are shown in Table 3.4.

3.2.9.4 Shift operators. Logical and arithmetic shift operators are pro-
vided in Verilog for shifting their operands n places to the right or left.
Such an operator shifts its first operand by the number specified by its
second operand. Logical shift operators (>>, and << for shift right and
left) fill the vacated bit positions with zeros.

Fill values for arithmetic shift operators depend on the type of their
results being signed or unsigned. For unsigned results, arithmetic shift
operators behave like the logical operators and fill their vacated bit
positions with zeroes. If an arithmetic shift operator is used for pro-
ducing a signed result (determined by the left-hand side, or other expres-
sions), vacated bit positions due to shifting will be filled with the most
significant bit (sign bit) of the first operand of the shift operator. Several
examples are shown in Table 3.5.

Verilog Language Concepts 51

&

0
^~^

0
0 1

0 0 0

0 1 x x

1 x x

1 1 1 1
1 x x

1 x0 x0

0

1

x

x x

x

0
x
0
1

x
x
x
x

x xx

x x x

1 x x

xx1
x

x

x

x

x

x

x

x

x

x

x

x

X

1

0

0 Z

Z

1

X

Figure 3.10 Bit-by-bit Bitwise and Reduction Operators

TABLE 3.4 Logical, Bit-Wise, and Reduction

Example Results in

8’b01101110 && 4’b0 0
8’b01101110 || 4’b0 1
8’b01101110 && 8’b10010001 1
! (8’b10010001) 1
8’b01101110 & 8’bxxzz1100 8’b0xx01100
8’b01101110 | 8’bxxzz1100 8’x11x1110
~& (4’b0xz1) 1
~| (4’b0xz1) 0

3.2.9.5 Concatenation operators. An important operation in hardware
modeling is concatenation. This operation is used for formation of vec-
tored sources or destinations from smaller vectors or scalars. The nota-
tion used for this operator is a pair of curly brackets ({...}) enclosing all
scalars and vectors that are being concatenated.

The concatenation operator may be used on the left-hand side of an
assignment. For example, if a is a 4-bit reg and aa is a 6-bit reg, the fol-
lowing assignment places 1101 in a and 001001 in aa:

{a, aa} = 10’b1101001001

A concatenation operation on the right-hand side forms a vector of the
size of all the variables that are being concatenated. This vector may be
used in other operations or can be assigned to a left-hand side target.

A repetition multiplier can be used to form a vector. This vector may
be used in another concatenation operation, or may be used as a vector
in other operations, or as a right-hand side assignment. If the a and aa
variables have the values assigned to them above, and aaa is a 16-bit
reg data type, then the assignment,

aaa = {aa, {2{a}}, 2’b11}

puts 001001_1101_1101_11 in aaa. The leftmost 6 bits come from aa,
the next 8 bits are two times repetition of a, and the least-significant
2 bits are the 2-bit constant 11. Below are more examples of concate-
nation and replication operators:

{a, 2{b,c}, 3{d} is equivalent to: {a,b,c,b,c,d,d,d}
{2’b00, 3{2’01}, 2’b’11} results in: 10’b0001010111

3.2.9.6 Conditional operator. The conditional operator in Verilog uses
the ?: notation, the general format of this operation is:

expression1 ? expression2 : expression3

If expression1 is true, then expression2 is selected as the result of the
operation; otherwise expression3 is selected. This operation provides a

52 Chapter Three

TABLE 3.5 Shift Operators

Example Results in

8’b0110_0111<<3 8’b0011-1000
8’b0110_0111<<1’bz 8’bxxxx-xxxx
Signed_LHS = 8’b1100-0000>>>2 8’b1111-0000

compact if-then-else type of construct for in-line continuous assignment
statements. If expression1 is X or Z, both expressions 2 and 3 will be
evaluated, and the result becomes the bit-by-bit combination of these two
expressions. The bit-by-bit combination produces a 0 or a 1 when both
expression bit positions are 0 or 1, respectively, and produces X other-
wise. Several examples of this operator are shown in Table 3.6.

3.2.9.7 Precedence of operators. An expression involving several dif-
ferent operators discussed above is evaluated based on the precedence
of operators, which determine which operation is performed first. Usually
parenthesis override default precedences, and their use is recommended
for clarity and unambiguity. All operators associate left to right with the
exception of the conditional operator that associates right to left.

Figure 3.11 shows the precedence rules in Verilog. Precedence of oper-
ators is from top to the bottom of the list, and those on the same row
have the same precedence. Figure 3.12 shows two examples for evalu-
ating expressions based on precedence.

As shown in Fig. 3.12, because + has a higher precedence than &, adding
is performed and the result is ANDed with W. In the other example in this

Verilog Language Concepts 53

TABLE 3.6 Conditional Operator

Example Results in

1 ? 4’b1100 : 4’b|ZX0 4’b1100
0 ? 4’b1100 : 4’b1ZX0 4’b1ZX0
X ? 4’b1100 : 4’b1ZX0 4’b1XX0

+ - ! ~

* *

* / %
+ -

<< >> <<< >>>

< <= > >=

== ! = === !==

& ~ &

^ ^~ ~^

~

& &

? :

Highest

Lowest

Figure 3.11 Operator Precedence

figure, because of left to right association, A&B is done, C+D is done,
and the result of these two operations are logical ANDed to form a one
bit result.

3.2.10 Verilog data types

Verilog has net and reg data types representing wires and variables,
respectively. The net type represents data carriers such as intercon-
necting wires, gate outputs, and busses. The reg data type represents
variables that hold the value they are assigned until they are overwrit-
ten. Additionally, a net or a reg can be declared as signed, which deter-
mines how they interpret data assigned to them. Declaring net and reg
types and their significance in hardware modeling are discussed here.

3.2.10.1 net declarations. A net represents a hardware wire driven by
one or more gates or other types of signal sources. The simplest form of
a net declaration begins with a keyword specifying the type of net fol-
lowed by a list of identifiers.

Allowed net types are shown in Fig. 3.13. Types wire and tri, wand
and triand, and wor and trior are equivalent. Types supply0 and
supply1 are used for declaring signal names for supply voltages. The

54 Chapter Three

W X + Y

+

&

+&

&&

A & B D+&& C&

Figure 3.12 Precedence Examples

NET TYPES PROPERTIES INITIAL

0

1

Driven: X
Not Driven: Z

Not Driven: Z

Driven: X

Driven: X

Not Driven: Z

X

Driven: 0

Driven: 1

 Tri-state wired
logic

Wired-and
logic

Wired-or
logic

Hold old value

Supply 0

Supply 1

Wire (tri)

Wand (triand)

Wor (trior)

trireg

Supply

Three-state

Capacitive

Figure 3.13 net types and Properties

trireg net type declares three-state capacitive signals. Other net types
(wire, wand, and wor or their equivalents, tri, triand, and trior)
declare state signals that allow multiple driving sources. The keyword
indicating a net type determines how multiple driving source values are
resolved to form a single net value. Shown below is a wire declaration
declaring wires w, n, m, and p. This statement declares wires used between
gates or boolean expressions representing logic structures (see Fig. 3.1).

wire w, n, m, p;

By default, ports of a module are net of wire type. In Fig. 3.3, co and
s represent wires that are driven by logic functions shown.

The wire type declares three-state signals. The table in Fig. 3.14
resolves multiple drivers on such signals. In this net type, an X value
on any driving source overrides values from all other sources. The Z
value is the weakest and is overridden by non-Z values from other driv-
ing sources. Driving a wire with multiple 0 and 1 conflicting values
resolves in the X value for the wire.

The wand and wor type nets signify wired-and and wired-or func-
tions, respectively. Figure 3.15 shows notations for these functions and
tabulates their resolved values. The wand type implements a wired-and
logic. For this type, a 0 value on a driving source overrides all other
source values. Value Z is treated as null and is overridden by any other
value driving a wand net. The wor, or wired-or, type performs the log-
ical OR operation on all its driving sources. In this operation, logic
value 1 on one source overrides all other source values. As in wand, the
Z value is the weakest and is overridden by 0, 1, and X values.

Net types tri0 and tri1 are similar to wire (tri) in their resolved
values except when the resolved value is to become Z in a wire net.
While Z is generated in a wire net, 0 is generated in tri0 and 1 is gen-
erated in tri1.

The trireg type net behaves as a capacitive wire and holds its old value
when a new resolved value is to become Z. As long as there is at least one
driver with 0, 1, or X value, trireg behaves the same as wire. When all

Verilog Language Concepts 55

s1

s2

wire value

s1

s2 0 1 Z

0

1

X

Z

0 X 0

X

X

0

1

X X

X

X

Z

X

X

X

1

1

Figure 3.14 wire net Types

drivers are turned off (Z), a trireg net retains its previous value. The
amount of time a trireg net holds a value is specified by a delay parame-
ter in its declaration. Delay parameters will be discussed next. Chapter 7
shows examples of using trireg for CMOS flip-flop modeling.

In the above discussion we presented net declarations by net types. In
addition to the type of the net, which specifies the resolution of driving-
value conflicts, a net declaration may also include net delay values.
Three delay values for net switching to 1, to 0, and to Z are specified in
a set of parenthesis that are followed by a # sign after the net type key-
word. A simpler format contains a single delay value. For example,
wires for the gate outputs of Fig. 3.1 may be declared by:

wire #5 w, n, m, p;

This declaration specifies five time units of delay for all transitions
of w, n, m, and p signals. This delay will be added to those of continu-
ous assignments or gate outputs driving these nets. Trireg net types
may also be declared with three delay parameters. Unlike the case with
other nets, in this case the third timing parameter is not delay for the
Z transition. Instead, this specifies the time that a declared trireg net
holds an old value when driven by Z.

The initial value for all net types except supply0 and supply1 with
at least one driver is X. A net with no driver assumes the Z value,
except for trireg, which has the initial value X.

3.2.10.2 reg declarations. In addition to the net type variable declara-
tions, Verilog also supports the reg data type. Unlike a net, which

56 Chapter Three

wand value

s1

s1

s2

s2

s1
s2 0 1 Z

0

1

X

Z

0 0 0

0

0

0

1

X X

X

X

Z

s1
s2 0 1 Z

0

1

X

Z

0 0

1

X

0

1

1 X

X

1

Z

X

0

1

X

1

X

1 X

1

X

1

wor value

Figure 3.15 (a) wand net Types, (b) wor net Type

models an interconnection or a gate output, a reg is a variable for hold-
ing intermediate signal values or nonhardware parameters and func-
tion values. The reg declaration shown below declares a, b, and ci as reg
types with 0 initial values.

reg a = 0, b = 0, ci = 0;

This declaration is used in the FulladderTester module of Fig. 3.4 for
assigning test values to the ports of the instantiated Full_adder module.

Because reg variables are not used exclusively for hardware model-
ing, other reg type declarations for more convenient forms of model
parameters are provided in Verilog. These reg types are integer and
time. An integer declaration declares a signed 2s-complement number,
and a time declaration declares an unsigned reg variable of at least
64 bits. Verilog also allows declaration of real and realtime variables.
These variables are similar in use to integer and time variables, but
do not have direct bit-to-bit correspondence with reg type registers.
The default initial value of a declared reg is (X). As shown in Fig. 3.4,
this default can be overwritten when a reg is being declared.

3.2.10.3 Signed data. Verilog net and reg types can be declared as
signed. Integer declaration is always considered signed. A signed 16-bit
reg declaration is done as shown here:

reg signed [15:0] areg;

An expression using variables, nets, and constants as operand can
become signed or unsigned depending on its operands. The left-hand side
of an expression does not have any effect on the sign of the expression.
A signed reg that is shifted right by the >>> operator is sign filled,
whereas an unsigned reg shifted by this operator is zerofilled.

Integers are signed, and based numbers with the s notation are also
signed. Other vector constants are considered unsigned. Concatenation
and vector slicing always result in unsigned results. For other operators
to result in signed results, all operands must be signed.

If the right-hand side of an assignment is determined as signed, it is
sign extended to the size of its left-hand side and is placed on the left-
hand side reg or net. As mentioned before, the extension of the sign only
depends on the right-hand side and not on the left-hand side reg or net.

3.2.10.4 Parameters. Parameters in Verilog do not belong to either the
variable or the net group. Parameters are constants and cannot be changed
at runtime. Parameters can be declared as signed, real, integer, time,
or realtime. Shown in Table 3.7 are several parameter declarations.

Verilog Language Concepts 57

3.2.11 Array indexing

Bit-select and part-select operators are used for extracting a bit or a
group of bits from a declared array. Such addressing only applies to
contiguous bits of an array. We use arrays of Sec. 3.2.6 (Fig. 3.8) to
demonstrate bit-select and part-select operations. These arrays are
shown here for reference.

reg [7:0] Areg;
reg Amem [7:0];
reg Dmem [7:0][0:3];
reg [7:0] Cmem [0:3];
reg [2:0] Dmem [0:3][0:4];

3.2.11.1 Bit selection. Bit-selection is done by using the addressed bit
number in a set of square brackets. For example Areg[5] selects bit 5 of
the Areg array.

3.2.11.2 Part selection. Verilog allows constant and indexed part-select.
A constant part-select specifies range of bits to be selected. For exam-
ple, Areg[7:3] selects the upper five bits of Areg. On the other hand an
indexed part-select specifies starting index and the number of bits to be
selected. For example, Areg[3+:5] selects the same five bits as Areg[7:3]
does. Several examples follow:

Areg [5:3] selects bits 5, 4, and 3
Areg [5-:4] selects bits 5, 4, 3, and 2
Areg [2+:4] selects bits 5, 4, 3, and 2

3.2.11.3 Standard memory. The standard format for declaring a memory
in Verilog is to declare it as an array of a vector. For example Cmem, as
shown above, is a 4-word memory of 8-bit words. The address space of
this memory is 4. Emem as a byte-oriented memory of with a 10 bit
address (1024 address space) is declared as:

reg [7:0] Emem [0:1023];

58 Chapter Three

TABLE 3.7 Parameter Examples

Example Explanation

parameter p1=5, p2=6; 32 bit parameters
parameter [4:0] p1=5, p2=6; 5 bit parameters
parameter integer p1=5; 32 bit parameter
parameter signed [4:0] p1=5; 5 bit signed parameter

An expression can be used for addressing a memory. For example two
bits of Areg can be used to extract an 8-bit word of Cmem. This is done
as shown below:

Cmem [Areg[7:6]] // addresses Cmem by Areg[7:6]

A memory word can be used as an address for itself. The following
example uses the 8-bit word at location 0 of Emem to address this
memory:

Emem [Emem[0]] // addresses Emem by Emem[0]

Verilog allows selection rules for accessing part of an addressed word
of a memory. For this purpose a second set of square brackets to the right
of those used for memory addressing are used for bit- or part-select of
the accessed memory word. For example the four least significant bits
of the word at location 355 of Emem are accessed by:

Emem [355][3:0] // 4 LSB of location 355

This operation is equivalent to:

Emem [355][3-:4] // 4 bits starting from 3, down

Specifying a range of addresses in Verilog is not allowed. For exam-
ple, Emem locations 355 to 358 cannot be addressed as shown below.

Emem [355:358] // Illegal. Does not address a 4-word block

3.2.11.4 Indexing multi-dimensional memories. As discussed, declaring
multi-dimensional memories is allowed in Verilog, e.g., Dmem above. For
accessing such memories, simple indexings are allowed for specifying a
word in the memory, and bit-select and part-select are allowed for access-
ing bit or bits of the addressed word. Figure 3.16 shows examples using
arrays of Fig. 3.8.

3.3 Verilog Simulation Model

The previous section discussed net and reg declarations as well as
operators, arrays, names, numbers, and other utilities that are used for
representation and simulation of hardware entities. This section dis-
cusses how these utilities are used for correct modeling and simulation
of hardware at various levels of abstraction. Data types net and reg rep-
resent very different entities in a hardware model, and the Verilog HDL

Verilog Language Concepts 59

is very specific as to the way they are used and the language constructs
they are used in. We will show semantics of assignments to reg and net
data types.

Variables declared as net are assigned values in Verilog concurrent
bodies using continuous assignment statements. On the other hand,
reg variables are assigned values in procedural bodies. The following
discusses details of these constructs.

60 Chapter Three

 07

 Areg

7

0

 Amem

0

7

0

3

0

07

3

// declaration: reg [7:0] Areg;
Areg [7:5]

// declaration: reg Amem [7:0];
Amem [3]

// declaration: reg Bmem [7:0][0:3]
Bmem [2] [1]

// declaration: reg[7:0] Cmem [0:3]
Cmem [1] [6 -: 4]

// declaration: reg [2:0] Dmem [0:3][0:4]
Dmem [0] [2]

 Bmem

Cmem

Dmem

3

0

0
1

2
3

4

Figure 3.16 Array Addressing and Selection

3.3.1 Continuous assignments

In this section we will discuss simple continuous assignments, assign-
ments with delay, strength specification, net assignments, and assign-
ments with multiple drivers.

3.3.1.1 Simple assignments. Acontinuous assignment in Verilog is used
only in concurrent Verilog bodies. This assignment represents a net driven
by a gate output or a logic function. In its simplest form, a continuous
assignment begins with the assign keyword, followed by the left-hand side
net type variable, an equal sign, and a right-hand side expression. The
example shown below models the OR gate at the output of Fig. 3.1.

assign w = m | p;

Like the OR gate, the above assignment becomes active only if an
input of the gate (m or p), which represent nets on the right-hand side
of the assignment, changes value.

3.3.1.2 Delay specification. Continuous assignments may also include
delay parameters. Using this format a better correspondence to the OR
gate of Fig. 3.1 is:

assign #2 w = m | p;

This assignment becomes active when m or p changes. At this time,
the new value of the m | p expression is evaluated, and after a wait time
of two time units, this new value is assigned to w.

The order in which continuous assignments appear in a Verilog con-
current body is not significant. Figure 3.17 shows four concurrent assign-
ments corresponding to the gates of Fig. 3.1. Like the gates of this figure,
regardless of its position in the code, each assignment waits for a right-
hand side variable to change for it to execute.

Verilog Language Concepts 61

`timescale 1ns/100ps

module Mux2to1 (input a, b, c, output w);
wire n, m, p;
assign #3 m = a & b;
assign #3 p = n & c;
assign #6 n = ~b;
assign #2 w = m | p;

endmodule

Figure 3.17 Concurrent Continuous Assignments

Figure 3.18 shows simulation of the Verilog code of Fig. 3.17. Starting
with a = b = c = 1, b changes to 0 at time 100 ns. This causes the first
and the third assign statements to execute which causes m to become
0 at 103 ns and n to become 1 at 106 ns. The change on m at 103 ns
causes the execution of the last assign statement causing w to go to 0
after 2 ns at 105 ns (103 ns + 2 ns). Meanwhile, the change on n at 106 ns
causes the second assign statement to execute which causes p to become
1 after 3 ns at 109 ns. Note that p is used on the right-hand side of the
assignment to w (the last assign statement). Because of this, at time
109 ns the right-hand side of w is evaluated again, and the calculated
1 value is assigned to w after 2 ns at time 111 ns.

The simulation of the above circuit results in a glitch due to a 1-hazard
on w. The event driven simulation of concurrent statements makes this
simulation to correspond to events in the actual circuit.

3.3.1.3 Strength specification. In addition to a logical value in the four-
value system (0, 1, X, and Z), Verilog allows nets to have strength
values. Strength adds another degree of accuracy in modeling signal
when the basic four values do not suffice. Strengths for nets are speci-
fied when assignments are done. As signals combine, new strength
values are formed in the resulting signals.

Net strengths are specified by a pair of strength values bracketed by
a set of parenthesis, as shown below.

assign (strong0, strong1) w = m | p;

62 Chapter Three

Figure 3.18 Simulation Run Showing a Glitch on w

One strength value is for logic 1 and one is for logic 0, and the order
in which the strength values appear in the set of parenthesis is not
important. Strength value names for logic 1 end with a 1 (supply1,
strong1, pull1, weak1, ...) and those for logic 0 end with a 0 (supply0,
strong0, pull0, weak0, ...).

For wire and tri type nets, drive strength values are used, and for
storage nets charge strength is used. Figure 3.19 shows strengths, their
values, and the net types they apply to.

The strength value set for wire and tri type nets is referred to as
drive_strength and is specified when an assignment to net takes place
or when net is declared. Default values for these nets are strong0 and
strong1 for logic 0 and logic 1, respectively. The strength for trireg type
nets specifies how weak or strong the charge storage capability of the
net is. Three strength values, large, medium, and small, are used for
these net types, and the default is medium. Examples in Chap. 7 illus-
trate how different strength values are resolved on gate outputs.

3.3.1.4 Net declaration assignments. Using the net declaration assign-
ment, a net assignment can be done at the same time that it is being
declared. An assignment made as such, provides one driver for the

Verilog Language Concepts 63

Wires (tri) wand (triand),

Wor (trior), tri0, tri1

Strength value

Supply 0

Strong 0

Pull 0

Weak 0

Highz 0

Highz 1

Weak 1

Pull 1

Strong1

Supply 1

trireg

Level Strength values

7

6

5

4

3

2

1

0

0

1

2

3

4

5

6

7

Large

Medium (0)

Small (0)

Small (1)

Medium (1)

Large (1)

Strength 0

Strength 1

Weak values

Figure 3.19 net Types and Their Strengths

declared net. More drivers can be assigned to the same net using con-
tinuous assignment statements. As with continuous assignments and
net declarations, strengths and timing may also be specified in a net
declaration assignment.

The use of net_declaration_assignment construct is illustrated in
Fig. 3.20. In this code, all the continuous assignments of Fig. 3.17 are
replaced by a list of net declaration assignments providing drivers for
w, n, m, and p signals. Drive strengths and/or delay values specified in
a net declaration assignment apply to all net drivers. The syntax used
here consists of a list of net declaration assignments as part of a net
declaration construct. The same syntax can also be used with continu-
ous assignments. In order to be able to specify delay values for individ-
ual wires, use of separate continuous assignments, as in Fig. 3.17, or
separate net declaration assignments is recommended.

3.3.1.5 Multiple drivers. A situation in hardware in which several gate
output are connected to the same wire is modeled with continuous assign-
ments by having multiple assignments to the same left-hand side net. In
this case, the net value is said to be driven with multiple sources simulta-
neously. The resulting net value is determined by the resolution of mul-
tiple driving values depending on the net types, as discussed in Sec. 3.2.10.

An example for multiple drivers using wired-or resolution is shown
in Fig. 3.21. The code shown here models the circuit of Fig. 3.1 and is
equivalent to the Verilog code shown in Fig. 3.17. The OR operation of
the right-hand side of w in Fig. 3.17 is replaced by multiple assign-
ments to the w net of wor type. This net has a delay of 2 ns, which is
added to the individual driver delay values. A value assigned to w is first
delayed by continuous assignment delay. Before this value appears on
w, it is further delayed by 2 ns specified in wor declaration.

Figure 3.22 compares the simulation results of the Verilog codes of
Fig. 3.17, Fig. 3.20, and Fig. 3.21. All simulations are event based.
Waveforms of Fig. 3.17 and Fig. 3.21 are identical. The reason the timing

64 Chapter Three

`timescale 1ns/100ps

module Mux2to1Net (input a, b, c, output w);
wire #3
m = a & b,
p = n & c,
n = ~b,
w = m | p;

endmodule

Figure 3.20 Using net_declaration_assignment

of the simulation of the Verilog code of Fig. 3.20 is different is that we
have used a single delay value (#3 ns in Mux2to1Net module) for all
wire delays.

3.3.2 Procedural assignments

Procedural assignments in Verilog take place in the initial and always
procedural constructs, which are regarded as procedural bodies as dis-
cussed in Sec. 3.3.1. Primarily, assignments to reg data types take place
in procedural bodies. This section discusses procedural flow control,
blocking assignments, nonblocking assignments, and two forms of pro-
cedural continuous assignments.

3.3.2.1 Procedural flow control. Statements in a procedural body are
executed when program flow reaches them. Several flow control state-
ments are available to control procedural flow in a procedural body. These
language constructs are classified as delay control and event control. In

Verilog Language Concepts 65

`timescale 1ns/100ps

module Mux2to1Multiple (input a, b, c, output w);
wire n;
wor #2 w;
assign #3 w = a & b;
assign #3 w = n & c;
assign #6 n = ~b;

endmodule

Figure 3.21 A net with Multiple Drivers

Figure 3.22 Simulation Run of Assignment Statements

the examples of Chaps. 4 to 6 we will show examples of these constructs
and discuss their details. However, because these constructs affect the way
procedural assignments are done, a brief discussion is included here.

Within a module, several procedural bodies may be used. Flows into
these bodies concurrently begin at the same time at the start of simula-
tion. An event or delay control statement in a procedural body causes pro-
gram flow to be put on hold temporarily. The flow continues after an event
occurs or a delay expires. Figure 3.23 shows three procedural flow con-
trol statements. In Fig. 3.23a, program flow stops when it reaches the
@ (reset) statement and resumes when the value of reset changes. In
Fig. 3.23b, program flow resumes after the positive edge of the clk, and in
Fig 3.23c, program flow resumes after being put on hold for 10 time units.

3.3.2.2 Procedural blocking assignments. A blocking assignment uses a
reg data type on the left-hand side and an expression on the right-hand
side of an equal sign. An event or delay control statement may delay exe-
cution of this statement. In addition to statements for control of program
flow, procedural assignments may also contain intra-assignment delay
or event control. The syntax of intra-assignment control constructs is
similar to that of procedural flow control statements, discussed above,
but these constructs appear on the right-hand side of an equal sign in
a procedural assignment. Shown below is a procedural assignment that
is delayed by 200 time units by a delay control statement and by 100 time
units by an intra-assignment delay control.

. . ._; #200 a = #100 b;

In this example, after 200 time units, when program flow reaches the
procedural assignment, b is evaluated, and its value is assigned to a after
100 time units. The equal sign is used here for blocking assignment. In
this case, the 100-time-unit delay blocks the procedural program flow
until assignment to a takes place.

66 Chapter Three

always
.

.

.
@ (reset)
.

.

.

end

always always

.

.

.

.

.

.

.

.

.

.

.

.

end end

#10@ (posedge CLK)

Figure 3.23 Procedural Flow Control

Figure 3.24 shows an initial block that uses blocking assignments for
assigning values to b. Signal b is a reg that is initialized to 1 at time
0 ns, set to 0 at time 180 ns, and set back to 1 at time 300 ns. The intra-
assignment timing control statement blocks procedural flow and stops
it from reaching assignment of 1 to b until b is assigned the value 0. The
$display statement shown in this figure displays 400.

3.3.2.2 Procedural nonblocking assignments. Within a procedural block,
nonblocking assignment to reg data types may be done. A nonblocking
assignment uses the left arrow notation <= (left angular bracket followed
by the equal sign) instead of the equal sign used in blocking assignments.

A nonblocking assignment is different from a blocking assignment only
in the way in which intra-assignment control constructs are treated.
Unlike a blocking assignment, a nonblocking assignment does not block
the program flow in a procedural construct. When flow reaches a non-
blocking assignment, the right-hand side of the assignment is evaluated
and will be scheduled for the left-hand side reg to take place when the
intra-assignment control is satisfied.

Figure 3.25 shows an initial block that uses nonblocking assign-
ments for assignment of values to a. Signal a is a reg that is initialized

Verilog Language Concepts 67

initial begin : Blocking_Assignment_to_b
b = 1;
#100
b = #80 0; b = #120 1;
#100
$display (“Initial Block with Blocking Assignment to b

Ends at:”, $time);
end

Figure 3.24 Blocking Procedural Assignments

initial begin : Nonblocking_Assignment_to_a
a <= 1;
#100
a <= #80 0; a <= #120 1;
#100
$display (“Initial Block with Nonblocking Assignment

to a Ends at:”, $time);
end

Figure 3.25 Nonblocking Procedural Assignments

to 1 at time 0 ns, set to 0 at time 180 ns, and set back to 1 at time 220 ns.
The intra-assignment timing control statements used here, delay the
assignment of values to a, but they do not block the flow of the program,
while delays to a are being processed. In other words, an intra-assignment
delay causes scheduling of a value into its left-hand side signal, and pro-
ceeds immediately to the next statement. The $display statement
shown in Fig. 3.25 displays 200.

Figure 3.26 shows waveforms generated on b and a as a result of
initial blocks shown in Fig. 3.24 and Fig. 3.25 respectively. We are also
showing statements displayed in the simulation console. Note that when
intra-assignment delays are used with nonblocking assignments, these
delays do not affect the flow of program in the procedural blocks they
are used in.

3.3.2.4 Multiple assignments. Another important issue regarding pro-
cedural reg type assignments is the way multiple assignments from
multiple procedural constructs interact. Because of the sequential flow
in procedural bodies, an assignment takes place only when the program
flow reaches it. If several assignments appear at the same real time in
a procedural body, the last assignment overrides all others. However, if
program flow in two procedural bodies reaches assignments to the same
reg at exactly the same time, the outcome of the value assigned to the
left-hand side of the assignment will not be known.

Consider, for example, the partial code shown in Fig. 3.27 for clock gen-
eration for testing a flip-flop. The intended operation of this code may have
been for clk to get initialized to 0, and after that get complemented every
17 time units. However, this is not necessarily the way the code simulates.

At time 0, flows into the initial and always blocks begin simultane-
ously. In the initial block shown, clk is being set to 0, and in the always
block, at exactly the same time, clk is being complemented. Because the
initial value of the reg type variable clk is X, the complement operation
in the always block tries to complement X if clk is not initialized to 0
in the initial block. Whether clk is first set to 0 and then complemented,
is first complemented, or is set to X because of the conflict is not known.

68 Chapter Three

Figure 3.26 Comparing Blocking and Nonblocking Procedural Assignments

This code works properly only if complementing of the clk is delayed
until the clk is initialized to 0 in the initial block.

One way to correct this problem is to delay complementing the clock
by one simulation cycle. This can be done by inserting #0; in the always
block before complementing the clk, as shown in Fig. 3.28. This way, in
the first simulation cycle, clk is set to 0 at time 0, and immediately
after that, in the next simulation cycle, still at time 0, clk is set to the
complement of 0. Every time clk is complemented, flow in the always
block is suspended for 17 time units, after which clk is complemented
again for as long as the simulation run continues.

3.3.2.5 Procedural continuous assignment. Using a procedural contin-
uous assignment construct, an assignment to a reg type variable can
be made to stop all other assignments to this variable from taking place.
The procedural continuous assignment to variable qout is done by the
following procedural statement:

assign qout <= 0;

Verilog Language Concepts 69

initial begin
clk = 0;

end

always begin
clk = ~clk;
#17;

end

Figure 3.27 Multiple reg Assignments

initial begin
clk = 0;

end

always begin
#0;
clk = ~clk;
#17;

end

Figure 3.28 Multiple reg Assignments; Delay Used for Deterministic Results

While qout is not deassigned, no other assignments affect its value.
Deassigning a reg type variable qout is done by the following statement:

deassign qout;

Figure 3.29 shows an example of the use of procedural continuous
assignments. Two always blocks are used in this example. The first
block becomes active any time reset changes. In this block, if reset is 1,
the qout output of flip-flop is assigned a 0. This value is forced on qout
and cannot be overridden until qout is deassigned. In the first always
block, if reset is not active (it is 0), the flip-flop output qout is deas-
signed. Only after qout is deassigned can other assignments to qout
change its value.

The second always block in Fig. 3.29 assigns din to qout on the posi-
tive edge of the clk. This assignment takes place only when reset is 0. While
an assign is in effect, another assign to the same variable, deassigns the
one that is in effect and then assigns a new value to the variable.

3.3.2.6 Force and release. Another form of procedural continuous
assignments is provided by force and release statements. Unlike assign
and deassign, which apply to reg type variables, force, and release
constructs apply to net and reg types. Forcing a value on a net over-
rides all values assigned to the net through continuous assignments or
connected to it through gate outputs.

Various forms of assignments to net or reg data types were presented
in this section. Simulation semantics of each assignment was presented
and examples were given. More examples of these assignments and
their role in modeling hardware and writing testbenches will be given
in chapters on combinational and sequential circuit modeling.

70 Chapter Three

`timescale 1ns/100ps

module FlipflopAssign (input reset, din, clk, output qout);
reg qout;
always @ (reset) begin

if (reset) assign qout <= 0;
else deassign qout;

end
always @ (posedge clk) begin

qout <= din;
end

endmodule

Figure 3.29 Procedural Continuous Assignments

3.4 Compiler Directives

Certain hardware modeling requirements in Verilog are provided as
compiler directives instead of being incorporated in the main syntax
of the language. Compiler directives provide facilities for file inclusion,
timing specification, default settings, and string substitution. This
section provides a brief description of these language facilities.
Directives are presented in the order of their importance in hardware
modeling.

3.4.1 `timescale

The `timescale directive sets the time unit and time precision in a
module. Including the

‘timescale 1ns/100ps

directive before a module header causes all time-related numbers to be
interpreted as having a 1ns time unit. When expressions manipulating
timing values are performed, 100 ps precision will be used.

3.4.2 `default_nettype

Undeclared nets are implicitly declared as wire type nets. The default
wire type can be changed by the `default_nettype. For example,

‘default_nettype wor

at the beginning of a module causes undeclared nets in constructs such
as the terminal list of a module instance to be assumed to be wor type
nets.

This default setting stays in effect for all future compilations until it
is set to another value or reset by use of the `resetall directive.

3.4.3 `include

To include a parameter definition file or a section of shared code in a
module, the `include directive may be used. Because Verilog does not
provide a common library of parts and utilities, a shared code must be
explicitly inserted in modules that use the code. This can be achieved
using the `include directive.

3.4.4 `define

For better code readability, a meaningful string (referred to as text
macro) can be defined to represent a number or an expression. The

Verilog Language Concepts 71

`define directives shown below define word_length of 32 and assign
the 101 binary code to state begin_fetch_state of a state machine.

`define word_length 32
`define begin_fetch_state 3’b101

Defined strings may be used in Verilog code text by preceding their
defined names by a back quote. For example, if ‘begin_fetch_state is used
anywhere in a Verilog code, it is replaced by 3’b101. The `undef direc-
tive undefines a previously defined text macro.

3.4.5 `ifdef, `else, `endif

The ̀ ifdef directive tests whether a text macro that immediately follows
the `ifdef keyword has been defined using the `define directive. If the
next macro has been defined, the group of lines bracketed between
`ifdef and ̀ else is compiled. If the text macro has not been defined, the
group of lines bracketed between `else and `endif is compiled.

These directives can appear anywhere in a Verilog source code. The
two groups of lines bracketed in an `ifdef, `else, `endif structure must
independently have correct syntax.

3.4.6 `unconnected_drive

A port value left open in the connection list of a module instantiation
assumes the default net value. To change this and to force pull0 or pull1
values on unconnected ports, the ̀ unconnected_drive directive can be
used. The only arguments allowed with this directive are pull0 or pull1
for unconnected values 0 and 1, respectively. The effect of this directive
may be turned off by `nounconnected_drive direction.

3.4.7 `celldefine, `endcelldefine

The `celldefine and `endcelldefine directives bracket modules that
are to be considered as cells. The Verilog programming language inter-
face (PLI) uses cell modules.

3.4.8 `resetall

The ̀ resetall directive turns off the effect of all compiler directives. Using
this directive at the beginning of every module guarantees that no pre-
vious setting affects compilation of modules and that all defaults are set.

3.5 System Tasks and Functions

For testbench generation, data input and output, timing check, simu-
lation flow control, data conversion, and memory initialization and

72 Chapter Three

specification, Verilog provides a number of system tasks and functions
categorized into ten groups. The names of system tasks and functions
begin with a dollar sign ($), followed by a task specifier. The name of the
task or function usually contains characters and names that describe its
functionality. A brief description of these language utilities will be given
here. Application of several of these tasks has already been presented in
this and the previous chapter, and more tasks and functions will be pre-
sented in the examples that use them in the chapters that follow.

3.5.1 Display tasks

Display tasks are used for outputting to the standard output device. The
most basic display task is the $display task, which writes its string
argument to the display device. Other tasks include those for monitor-
ing and outputting variable values as they change (the $monitor group
of tasks) and those for displaying variables at a selected time (the $dis-
play tasks). Display tasks can display in binary, hexadecimal, or octal
formats. The character b, h, or o at the end of the task name specifies
the data type a task handles. For all display tasks, a generic task can
be used to display data with specified formats and data types. Chapter
on testbenches presents examples that take advantage of many of these
tasks for outputting test results.

3.5.2 File I/O tasks

File output tasks begin with a dollar sign followed by the letter f (for
file) and then by the same task names as those of the display tasks.
These tasks perform the same functionalities as their display task coun-
terparts, except that their output is to a file instead of to the display ter-
minal. The $fopen function opens a file and assigns an integer file
description. The file descriptor will be used as an argument for all file
I/O tasks. In addition, there are string write tasks ($swrite) that write
their formatted outputs to a string.

Verilog also provides tasks for inputting data from files or strings. Such
tasks allow reading characters, formatted data, or complete memory data
from external data files or declared strings. Examples of these tasks are
$fgetc, $fscanf, and $sscanf for getting a character from a file, reading
formatted data from a file, and reading formatted data from a string,
respectively. Other input tasks exist for reading memory data directly into
a declared memory. Examples of such tasks are $fread and $readmemh.

File positioning tasks, $fseek and $frewind are also available for
positioning file pointer for read or write.

Verilog I/O tasks are useful in developing complete hardware/software
environments and developing testbenches. In the chapters that follow we
will use these tasks for developing testbenches and in conjunction with

Verilog Language Concepts 73

such applications, we will describe utilization of tasks. Appendix B has
a complete list of tasks and a simple example of each.

3.5.3 Timescale tasks

Timescale tasks are $printtimescale and $timeformat. The $print-
timescale task displays the timescale and precision of the module
whose hierarchical name is being passed to it as its argument. The
$timeformat task formats time for display by file IO and display tasks.

3.5.4 Simulation control tasks

Simulation control tasks are $finish and $stop. The $finish task ends
the simulation and exits. Usually, simulation environments require a
confirmation before the action of exiting the environment is taken. The
$stop task suspends the simulation and does not exit the simulation
environment.

3.5.5 Timing check tasks

Timing check tasks are used for checking timings, such as pulse width
duration and setup and hold times. In general, timing check tasks check
the timing on one signal or the relative timing of several signals for cer-
tain conditions to hold. If a violation is detected, a message will be
issued in the user simulation environment display area. For example,
the statement shown below uses the $nochange timing check task to
report a violation if d_input changes in the period of three time units
before and five time units after the positive edge of the clock.

$nochange (posedge clock, d_input, 3, 5);

3.5.6 PLA modeling tasks

Programmable logical array (PLA) modeling tools use a declared
memory as their first argument, configure it as synchronous or asyn-
chronous, assign inputs and outputs to the PLA array, and configure the
logical function of the PLA. Names used for PLA modeling tasks consist
of three fields, sync_async, and_or, and array_plane. Tasks are named
using these three fields separated by dollar signs. The general format
that we use for describing these tasks is

$sync_async$and_or$array_plane

where sync_async can be either sync or async; and_or can be and, or,
nand, or nor; and in place of array_plane, array or plane can be used.

74 Chapter Three

Shown below is a PLA system task that defines an asynchronous PLA
with a nand logical function, a1 to a7 inputs, and b1 to b4 outputs. PLA
nand-plane fuses are determined by the contents of the mem8by4
declared memory, as shown in Fig. 3.30.

$async$nand$array
(mem8by4,
{a1, a2, a3, a4, a5, a6, a7, a8},
{b1, b2, b3, b4})

With this task and memory contents shown in Fig. 3.30, PLA outputs
will be assigned values as shown in Fig. 3.31.

3.5.7 Conversion functions for reals

Verilog provides four system functions for converting from real to inte-
ger or bit, and for converting between bit or integer and real. These func-
tions are $bitstoreal, $realtobits, $itor, and $rtoi.

3.5.8 Other tasks and functions

In addition to the above system utilities, Verilog provides several sto-
chastic and probabilistic tasks and functions. Among these utilities,

Verilog Language Concepts 75

b1

b2

b3

b4

b1

b2

b3

b4

a8a7a6a5a4a3a2a1
a1 a2 a3 a4 a5 a6 a7 a8

 0 0 1 1 0 0 0 1

 1 1 0 0 1 0 0 0

 0 0 0 0 1 1 0 0

 0 1 0 1 0 0 0 0

Figure 3.30 (a) Contents of mem8by4, (b) Corresponding PLA NAND Plane

b1 = ~(a3 & a4 & a8)

b2 = ~(a1 & a2 & a5)

b3 = ~(a5 & a6)

b4 = ~(a2 & a4)

Figure 3.31 PLA Output Equations

$random is a useful function for random data generation. We will use
this task in examples in the chapters that follow.

There are also three time functions, $realtime, $time, and $stime,
that return the simulation time in various formats.

3.6 Summary

The first part of this chapter presented general timing and concurrency
concepts that are particular to hardware description languages. The
second part, discussed utilities found in Verilog for describing hard-
ware and hardware test environments. This part focused on general
syntax of the language its operators, names, and data types. In the next
section we discussed simulation of hardware described in Verilog using
language constructs and utilities of this language. In the last part of this
chapter tasks and compiler directives were discussed, that are part of
the language utilities for hardware and testbench modeling, but are
secondary to those discussed in Sec. 3.2. Overall this chapter presented
most of Verilog without presenting a lot of examples and specific appli-
cations of the language constructs. The chapters that follow use this
material to develop combinational and sequential circuit Verilog codes
and their testbenches.

Problems

3.1 Starting at time 0 and assuming that no data is applied to the inputs of
the circuit, show values on c, a, b, and y from time 0 until the circuit stabilizes.
Include all X and Z initial values. List hexadecimal values in a tabular form.

76 Chapter Three

`timescale 1 ns/1 ns
module quest1 (a, b, c, y);

input [3:0] a, b, c;
output [7:0] y;
assign #3 a = 2’b2;
assign #4 b = - 3’b3;
assign #1 y = ~ c;
assign #2 c = a ^ b;

endmodule

3.2 Starting at time 0 and assuming that a receives hex value A at time 10 ns,
show values on a, b, w, and y from time 0 until the circuit stabilizes. Include all
X and Z initial values. List values in a tabular form, use hexadecimal
representation.

3.3 Starting at time 0 and assuming that a receives the hexadecimal value A
at time 10 ns and b receives hex value B at time 20, show values on a, b, w, and
y from time 0 until the circuit stabilizes. Include all X and Z initial values. List
values in a tabular form, use binary representation.

Verilog Language Concepts 77

`timescale 1 ns/1 ns
module quest2 (a, b, w, y);

input [3:0] a, b;
output [7:0] y;
output [11:0] w;
assign #30 b = 1’hF;
assign #40 y = {a, b};
assign #50 w = {a, b, b[1:0], b[3:2]};

endmodule

`timescale 1 ns/1 ns
module quest3 (a, b, w, y);

input [3:0] a, b;
output [7:0] y;
wor [7:0] y;
output [7:0] w;
reg [7:0] w;
assign #30 y = 8’h22;
assign #20 y = {a, b};
always @(a or b or y) #10w = y;

endmodule

3.4 In the following code, simulation begins at time 0; a receives hex value A
at time 10 ns and it receives 0 at time 40; while b receives hex value 5 at time
20 and 0 at time 50. Show values on a, b, w, and y from time 0 until the circuit
stabilizes. Include all X and Z initial values. List values in a tabular form, values
must be in hexadecimal.

`timescale 1 ns/1 ns
module quest4 (a, b, w, y);

input [3:0] a, b;
output [7:0] w, y;
reg [7:0] w, y;
always @(a or b) #17 w = {a, b};
always @(a or b) y = #17 {a, b};

endmodule

3.5 Rewrite the following code using nonblocking assignments such that
timings of assignments remain the same.

78 Chapter Three

initial
begin

a = #delay1 b;
c = #delay2 d;

end

3.6 Replace the three initial blocks shown below by only one.

initial
a = #delay1 b;

initial
c = #delay2 d;

initial
begin

e <= #delay3 f;
k <= #delay4 g;

end

3.7 Write a positive edge sensitive 8-bit D-type register with synchronous set
and reset inputs.

3.8 Given values of a, b, and c as shown, write the result of expressions shown
below.

Assume: a is [3:0], b is [3:0], c is [5:0]

Assume: a = 4’b0010, b = 4’b1010, c = 6’b001101

a & b = ? a || b = ?
a && b = ? a | b = ?
a + b = ? a = c , a = ?
a - b = ? c = b , c = ?
&b = ? | a = ?

3.9 What does the following code do? Rewrite it using blocking assignments.

always @(posedge clock) begin
a <= b;
b <= a;

end

3.10 What does the following code do? Rewrite it using blocking assignments.

Verilog Language Concepts 79

always @(posedge clock)
#0 a <= b + c;

always @(posedge clock)
b <= a;

3.11 Show waveform on d for the entire simulation time.

3.12 Memory indexing. A) Declare a 4K memory with word size of 8, and a
1-bit flag. B) Select the 5th bit of the 12th word of the memory and put it in the
flag. All these operations must be done as continuous assign statements.

3.13 Show waveforms for a, b, and c for the first 100 ns of simulation.

`timescale 1ns/100ps
module test;
reg b,c,d;

initial begin
b=1’b1;
c=1’b0;
#10 b=1’b0;
end
initial d = #25(b|c);

endmodule

Module test;
wire a, b;
reg c;
assign #60 a = 1 ;
initial begin

#20 c = b;
#20 c = a;
#20;

end
endmodule

3.14 Show values of x, y, and z in the first 100 ns of simulation.

80 Chapter Three

module test;
wire a;
reg x, y, z;
assign #25 a = 1 ;
always begin

#20;
x = #10 a;
#3 y = a;
#3 z = a;
#7;

end
endmodule

Suggested Reading

Brown, S., and Z. Vranesic, “Fundamentals of Digital Logic with Verilog Design”, McGraw-
Hill; New York, 2002, ISBN: 0-07-283878-7.

Navabi, Z., “Verilog Computer-Based Training Course”; CBT CD with hardcopy User’s
manual, McGraw-Hill, New York, 2002, ISBN 0-07-137473-6.

IEEE Std 1364-2001, IEEE Standard Verilog Language Reference Manual, SH94921-
TBR (print) SS94921-TBR (electronic), ISBN 0-7381-2827-9 (print and electronic),
2001.

IEEE Std 1076-2002, IEEE Standard VHDL Language Reference Manual, SH94983-TBR
(print) SS94983-TBR (electronic), ISBN 0-7381-3247-0 (print) 0-7381-3248-9 (electronic),
2002.

Chapter

4
Combinational Circuit Description

This chapter focuses on combinational circuits. After discussing prop-
erties of ports and wires, we give a detailed presentation of combina-
tional logic description in Verilog from gates to complex behavioral
descriptions. Delay specifications in conjunction with gates, boolean
expressions, and behavioral coding will be discussed. We will show how
a complete description can be made by putting together components at
various levels of abstraction. The last section in this chapter shows com-
binational logic coding for synthesis. In this section we highlight con-
structs that are synthesizable, and show styles of coding that are
unambiguous in terms of the hardware that they synthesize to.

4.1 Module Wires

A module in Verilog defines a hardware component. Inside a module,
various parts of a hardware component may be described by subcom-
ponents or processes that define lower-level structures of a component.
Wires or nets are used for interconnection of substructures together, and
interconnection of module ports to appropriate ports of a module’s sub-
structures. By default, module ports are wires (net). Wires have delays,
can take any of the four logic values (0, 1, Z, and X), and can be driven
by multiple drivers.

4.1.1 Ports

Figure 4.1 shows the Anding module with a, b, and y ports. Verilog allows
a port to be defined as input, output, or inout. An input port is always
a net and can only be read. An output is a net by default, and can be
declared as a reg if it is to be assigned a value inside a procedural block.

81

Copyright © 2006 by The McGraw-Hill Publishing Companies, Inc. Click here for terms of use.

An inout is a bidirectional port that can be written into or read from.
An inout port is always a net.

In the schematics of this book, we make a correspondence between nota-
tions used in the schematics and their corresponding Verilog code. For the
ports, we show an input port by a hollow box, and an output port by a
solid box. An inout will be shown by a half-solid box. Figure 4.2 shows an
example of this notation.

The default net type is wire for all module nets, including its ports.
A net declaration within a module can change this.

4.1.2 Interconnections

Figure 4.1 shows that inside the Anding module, module port nets are
connected to the ports of this module’s substructure which is an and
primitive. Basic gates are defined as Verilog primitives. The left-most
argument of the and primitive is its output and the other arguments
are its inputs.

Values put into the a and b inputs of Anding are carried through
these wires to the inputs of and. The and primitive generates its output,
which is carried through the y net to the output of Anding.

4.1.3 Wire values and timing

A net used for a module port or an internal interconnection can take any
of the four Verilog logic values, i.e., 0, 1, Z, and X. Such a value assigned
to a net can have a delay, which may be specified by the assignment to
the net or as part of its declaration. Multiple simultaneous assignments

82 Chapter Four

Figure 4.1 A Simple Module

`timescale 1ns/100ps
module Anding (input a, b, output y);

and (y, a, b);
endmodule

trimux
sel

i0

i1

g0

g1

g2

y
Figure 4.2 Multiplexer Using Tri-
State Buffers

to a net, or driving a net by multiple sources is legal and the result is
defined by the type of the net.

Figure 4.2 shows a multiplexer built by tri-state buffers. As shown,
the y output is driven by two tri-state buffers. Furthermore, the upper
buffer, which is labeled g1, receives the complement of sel, which may
delay it because of the inverter.

The Verilog code corresponding to the multiplexer of Fig. 4.2 is shown
in Fig. 4.3. This description uses not and bufif1 Verilog primitives.
The not gate uses the g0 instance name (which is optional for primitive
instantiations), takes sel as input, and puts its complement on the
declared net sel_ (we used underscore to read as logic BAR). This not
gate has a delay of 5 ns, which is specified after the sharp sign after the
name of the primitive.

Two instances of bufif1 are combined into one gate instantiation con-
struct by separating the two port connection lists by commas, and ending
the construct by a semicolon.

In a bufif1 port list the output comes first and is followed by the
input, and then followed by the tri-state control input. In our example
Verilog code, g1 selects i0 when sel is 0, and g2 selects i1 when sel is 1.

Figure 4.4 shows the simulation of bufif1 for several changes on i0,
i1, and sel between time 0 and 70 ns. Note that signal s in this wave-
form drives the sel input of the TriMux module. Test data inputs of this

Combinational Circuit Description 83

Figure 4.3 Verilog for a Multiplexer with Tri-State Buffers

`timescale 1ns/100ps

module TriMux (input i0, i1, sel, output y);
wire sel_ ;

not #5 g0 (sel_, sel);
bufif1 #4

g1 (y, i0, sel_),
g2 (y, i1, sel);

endmodule

Figure 4.4 Simulation Results of bufif1

circuit are 0 at time 0. Note that initially y is X until the value of i0 prop-
agates to this output at time 9 ns. The initial value of a driven net is X
and that of an undriven net is Z. The 9 ns delay is due to a 0 propagat-
ing to sel_ after 5 ns, and then i0 propagating to y after 4 ns.

At time 30 ns, when s (which drives sel) changes to 1, it causes g2 to
conduct after a 4-ns delay. At time 34 ns, both g1 and g2 conduct. g1 is
still conducting because it takes the not gate 5 ns to change the value
of sel_ and bufif1 an extra 4 ns to stop g1 from conducting. This causes
the value X to appear on y. Because of the delay of the not gate, this X
value remains on y for 5 ns. The opposite of this situation happens at
time 45 ns when sel becomes 0. Because of this change, after a 4 ns delay,
neither g1 nor g2 conduct, causing a Z (high impedance) to appear on y
for a period of 5 ns (inverter delay).

In this example we used simple delay constructs to demonstrate wire
values and delays. Verilog allows more detailed delay and strength spec-
ifications to model physical properties of wires and gates more closely.
These topics will be covered in the sections that follow.

4.1.4 A simple testbench

Values assigned to inputs of a circuit for examining its operation are
either specified within a simulation environment using a waveform
editor, or by a Verilog testbench. Values shown in Fig. 4.4 are generated
by the testbench of Fig. 4.5. In this description, TriMux is instantiated

84 Chapter Four

Figure 4.5 A Testbench for TriMux

`timescale 1ns/100ps

module TriMuxTest;
reg i0=0, i1=0, s=0;
wire y;

TriMux MUT (i0, i1, s, y);

initial begin
#15 i1=1’b1;
#15 s=1’b1;
#15 s=1’b0;
#15 i0=1’b1;
#15 i0=1’b0;
#15 $finish;

end

endmodule

and module-under-test (MUT) is used for its instance name. Using an
instance name for module instantiation is mandatory. Variables local to
this testbench, i0, i1, s, and y are connected to the ports of the MUT.
Because i0, i1, and s must be assigned values in this testbench, they are
declared as reg and initialized to 0. Wire y that connects to the output
of MUT is declared as a wire and is driven by this module.

The initial statement is a procedural construct and uses delay control
statements to delay the program flow in this procedural block. After
each such delay, a value is assigned to i0, i1, or s. At the end of this
block, after a 15-ns delay, the $finish simulation control task finishes
the simulation run. The delay before $finish allows the last input change
to have a chance to affect the circuit output. The delay values (15 ns) used
in this example are chosen so that inputs remain stable while a change
is propagating through the circuit. More elaborate testbenches will be
shown in the sections that follow. The chapter on testbenches shows
testbench writing techniques for combinational and sequential circuits.

4.2 Gate Level Logic

The previous section discussed the role of wires and basics of generat-
ing Verilog modules for simulation. Building upon that material, this sec-
tion presents generation of Verilog modules using predefined gate
primitives of this language. We will also discuss delay issues related to
these gates and ways of defining them and the way they affect timing
of an entire system.

4.2.1 Gate primitives

Verilog gate level primitives are shown in Fig. 4.6. This list includes
standard n_input, n_output, and tri-state gates. Verilog instantiation of
these gates are also shown in this figure. In addition, Verilog has switch
level and transistor primitives that will be discussed in a later chapter.

Gates categorized as n_input gates are and, nand, or, nor, xor, and
xnor. An n_input gate has one output, which is its left-most argument,
and can have any number of inputs that may be listed as its argument
separated by commas. These gates can have up to two delay parame-
ters that can appear after the name of the gate in a set of parenthesis
followed by a sharp sign. An example instantiation of a 4-input nand
is shown here.

nand #(3, 5) gate1 (w, i1, i2, i3, i4);

In this example, tPLH (low to high propagation) and tPHL (high to low
propagation) times are 3 and 5, respectively. Gate delays are optional,

Combinational Circuit Description 85

and if not included, 0 delay values are assumed. If only one delay param-
eter is used, e.g., #3 or #(3), that delay parameter applies to all gate
output transitions. Output transitions to X use the minimum of the
delays specified. The above example uses gate1 for the instance name.
This parameter is optional and can be eliminated.

Figure 4.7 shows a majority circuit (maj3) with a, b, c input and y
output. The circuit’s primary inputs are directly connected to the and
gate inputs. For connecting and gate outputs to the output or gate,
intermediate wires im1, im2, and im3 are used.

86 Chapter Four

and (w, i1, i2 ...)

nand (w, i1, i2 ...)

or (w, i1, i2 ...)

nor (w, i1, i2 ...)

xor (w, i1, i2 ...)

xnor (w, i1, i2 ...)

not (w, i)

buf (w, i)

bufif1 (w, i, c)

bufif0 (w, i, c)

notif1 (w, i, c)

notif0 (w, i, c)

pullup w

pulldown w

Figure 4.6 Basic Gate Primitives

im1

im2

im3

a

maj3

b

c

y

Figure 4.7 Majority Circuit

Figure 4.8 shows the Verilog code of the majority circuit. As shown,
the and primitive name and its delay specification are shared between
the three instances of this gate. The or gate uses 3 and 5 ns for its delay
parameters and drives the y output of the circuit.

4.2.2 User defined primitives

Basically, Verilog primitives are simple functions, and more complex
functions can be formed based on these functions. Alternatively, for
simple functions for which Verilog does not provide a primitive, a user-
defined primitive (UDP) can be formed.

A combinational UDP can form a combinational function of up to 10
inputs and one output. The definition of a UDP can only include a table
in the form of a logical Truth Table. A UDP output can only be specified
as a 0 or a 1. The Z value cannot be specified, and an X happens for
unspecified input combinations. A UDP definition cannot include delay
values, but when instantiating it, rise and fall (tPLH and tPHL) delay
values can be specified in the same way as in Verilog primitives dis-
cussed in Sec. 4.2.1. The initial value of the output of a UDP is X, which
changes to a 0 or a 1 after the specified delays.

Figure 4.9 shows a UDP defined for the majority function, the same
function implemented by the module of Fig. 4.8. A UDP definition begins
with primitive keyword, and after its name, its ports are defined. The
output of a UDP is always first in its port list.

The UDP table shown in Fig. 4.9 has all eight combinations for the
three inputs of this primitive. The ordering of table input columns is
according to the declaration of inputs, i.e., a, b, and c. In the table, a ?

Combinational Circuit Description 87

Figure 4.8 Majority Verilog Code

`timescale 1ns/100ps

module maj3 (a, b, c, y);
input a, b, c;
output y;
wire im1, im2, im3;

and #(2, 4)
(im1, a, b),
(im2, b, c),
(im3, c, a);

or #(3, 5) (y, im1, im2, im3);

endmodule

stands for a 0, 1 and an X. Therefore, 00? expands to 000, 001, and 00X.
For all of such combinations maj3 produces the same output.

The UDP table must contain all input combinations for 0 and 1 output
values. Otherwise, an unspecified input combination produces an X
output. A UDP is instantiated like a system primitive. Associated with
a UDP instantiation, zero, one, or two delay values may be specified.

4.2.3 Delay formats

A two-value gate such as an and and an xor uses a delay2 construct for
its delay specification. For a tri-state gate a delay3 language construct
is used that specifies its delay to 1, to 0, and to Z. For these gates, zero,
one, two, or three delay values may be specified. In the absence of the
third value, minimum of the first two will be used for transitions to Z.
Likely, transitions to X always take the minimum of the specified values.

Instead of a fixed delay value, min:typ:max delay may be used. This
delay specifies the minimum, typical, and maximum delay values. This
is called a delay expression and by default typ is used in simulation.
Overriding this default and using the other specified values can be done
by a simulation switch.

Figure 4.10 shows the schematic of a three-input XOR function. This
circuit uses not and nand gates. The Verilog code corresponding to this
diagram is shown in Fig. 4.11.

This Verilog code uses min:typ:max expressions for rise and fall
delays of not and nand gates. By default, simulation will be done with
typ delay values, i.e., 3 and 4 for not and 4 and 5 for nand gates. Delay
control in procedural statements that will be seen later in this chapter
can also use this delay format.

88 Chapter Four

Figure 4.9 Majority UDP

primitive maj3 (y, a, b, c);
output y;
input a, b, c;
table

0 0 ? : 0;
0 ? 0 : 0;
? 0 0 : 0;
1 1 ? : 1;
1 ? 1 : 1;
? 1 1 : 1;

endtable
endprimitive

Combinational Circuit Description 89

im1

im2

im3

a

im4

b

c

c_b_a_

y

xor3_mtm

Figure 4.10 Three-Input XOR

Figure 4.11 Verilog Code using min:typ:max Delay

`timescale 1ns/100ps

module xor3_mtm (input a, b, c, output y);
wire a_, b_, c_;
wire im1, im2, im3, im4;

not #(1:3:5, 2:4:6)
(a_, a),
(b_, b),
(c_, c);

nand #(2:4:6, 3:5:7)
(im1, a_, b_, c),
(im2, a_, b, c_),
(im3, a, b_, c_),
(im4, a, b, c);

nand #(2:4:6, 3:5:7) (y, im1, im2, im3, im4);

endmodule

4.2.4 Module parameters

Parameters can be used for defining delay values and other module con-
stants. Two types of parameters in Verilog are module parameters and
specify parameters. This section is dedicated to module parameters, and
specify parameters will be discussed when we talk about specify blocks.

Module parameters are either localparam for local parameters or
parameter. A local parameter of a module cannot be changed from out-
side of the module, whereas a parameter can.

Aparameter declaration begins with the parameter keyword and is fol-
lowed by individual parameters and their constant values. Declaration of
local parameters is similar, but uses the localparam keyword. Figure 4.12
shows Verilog code of the majority circuit in which parameters are used
for its timing delays. This description is according to the schematic of
Fig. 4.7.

The parameter declaration shown in this figure declares tplh1, tphl1,
tplh2, and tphl2, and gives them their constant values. These parameters
are used for rise and fall delays of and and or gates of this example.

Figure 4.13 shows several ways of instantiating the maj3_p module
and specifying some or all of its parameters. The MUT1 instance in
which no parameters are specified uses parameter values defined in the
maj3_p module by parameter declaration.

The MUT2 instance uses the ordered parameter assignment to over-
ride all parameters specified in the maj3_p module. The next format,

90 Chapter Four

Figure 4.12 A Parameterized Majority Circuit

`timescale 1ns/100ps

module maj3_p (input a, b, c, output y);
wire im1, im2, im3;

parameter
tplh1=2, tphl1=4,
tplh2=3, tphl2=5;

and #(tplh1, tphl1)
(im1, a, b),
(im2, b, c),
(im3, c, a);

or #(tplh2, tphl2) (y, im1, im2, im3);

endmodule

MUT3 also uses the ordered parameter assignment, but only overrides
the first two maj3_p module parameters.

The MUT4 instance of maj3_p of Fig. 4.13 uses named parameter
assignment to override only those selected parameters. In this format
parameter names and their corresponding values can appear in any order
and are identified by the actual parameter names used in the module.

The last alternative shown in Fig. 4.13 uses MUT5 for the instance
name of maj3_p module. In this case, a defparam construct along with
hierarchical naming are used to point to parameter tplh2 of maj3_p and
set its value to 7. This construct is referred to as parameter override, and
can be used with hierarchical naming to reach parameters at any lower
level of hierarchy.

Figure 4.14 shows output delays of maj3_p when this module is
instantiated by alternative methods shown in Fig. 4.13. For each case
rise and fall of the majority circuit output are shown. Because this circuit
does not have any negations, and the distance of all inputs to the output
is the same, rise (fall) delay of output y is calculated by simply adding
rise (fall) delays of all gates in the input to output path. For example
rise of MUT4 is calculated by adding 6 and 7 (new values) and its fall
is calculated by adding 4 and 5 that are the original module parameter

Combinational Circuit Description 91

Figure 4.13 Parameterized Module Instantiation

maj3_p MUT1 (aa, bb, cc, y1);
// Parameters are left as defined in module

maj3_p #(6, 8, 7, 9) MUT2 (aa, bb, cc, y2);
// Parameters are overwritten by 6,8,7, and 9

maj3_p #(6, 8) MUT3 (aa, bb, cc, y3);
// tplh1 and tphl1 are overwritten by 6 and 8,
// and tplh2 and tphl2 are left as defined in the module

maj3_p #(.tplh2(7), .tplh1(6)) MUT4 (aa, bb, cc, y4);
// tplh1 and tplh2 are overwritten by 6 and 7,
// and tphl1 and tphl2 are left as defined in the module,
// i.e, 4 and 5.

defparam MUT5.tplh2 = 7;
maj3_p MUT5 (aa, bb, cc, y5);
//tplh2 is overwritten with 7 and all other parameter values
// are left as defined in the module

values. Values shown in the waveforms of Fig. 4.4 verify the parameter
override discussion presented earlier.

As described in Chap. 3, the `timescale directive defines a module’s
delay format. With 1ns/100ps, we can use delay values with one frac-
tional digit. This format is illustrated in the parameterized three-input
XOR of Fig. 4.15. Gate level diagram of this code is shown in Fig. 4.10.

92 Chapter Four

Figure 4.15 A Parameterized XOR with Real Delay Values

`timescale 1ns/100ps

module xor3_p (input a, b, c, output y);
wire a_, b_, c_;
wire im1, im2, im3, im4;
parameter

tplh1=0.6, tphl1=1.1,
tplh2=0.3, tphl2=0.9,
tplh3=0.8, tphl3=1.3;

not #(tplh1, tphl1)
(a_, a),
(b_, b),
(c_, c);

nand #(tplh2, tphl2)
(im1, a_, b_, c),
(im2, a_, b, c_),
(im3, a, b_, c_),
(im4, a, b, c);

nand #(tplh3, tphl3) (y, im1, im2, im3, im4);
endmodule

Figure 4.14 Overriding Parameters of maj3_p

4.3 Hierarchical Structures

Designs based on primitives or lower-level descriptions can be used in
higher-level structures to form complete designs. There is no limit on
the number of hierarchies in a design, but it is important to remember
that simulation of such a design is done at the lowest level (gates or even
switches). This causes slow simulations, but produces detailed timing
results. A hierarchical primitive based design is often the output of a syn-
thesis tool. However, if such a design is used as an input for synthesis,
use of specific primitives is implied.

Verilog provides language constructs for easy description of large iter-
ative hardware modules or array based regular structures. Furthermore,
delay constructs, such as pin-to-pin delay specification, provide ways of
fine tuning timings of upper-level modules independent of their lower-
level details. This section uses examples of the previous section for for-
mation and timing specification of higher-level structures.

In this book we use graphical notations for hardware components to
correspond to the way these components are coded in Verilog. In these
notations we use a rectangular box to represent a top-level component
and rectangular boxes in the outer box to represent lower-level compo-
nents of the upper-level hierarchy. Graphical notations for ports and port
connections follow the conventions discussed in Sec. 4.1. Figure 4.16 is
an example for this notation.

4.3.1 Simple hierarchies

Just as primitives can be wired for generating upper-level structures,
existing modules can also be used as subcomponents of an upper-level

Combinational Circuit Description 93

xor3_p

maj3_p

a

b

ci

sum

co

add_1bit_p

Figure 4.16 Full Adder Using xor3_p and maj3_p

module. Figure 4.16 shows a full adder that uses the maj3_p and xor3_p
modules of Fig. 4.12 and Fig. 4.15 respectively. The circuit shown,
add_1bit_p, uses xor3_p to generate sum and maj3_p to generate co
(carry out).

Figure 4.17 shows module description corresponding to the diagram
of Fig. 4.16. Instance name for xor3_p is xr1 and that of maj3_p is mj1.
Unlike primitive instantiations, instance names for module instantia-
tions are not optional.

Connections of the ports of the add_1bit_p module to those of xor3_p
and maj3_p are done according to the order of ports of these subcom-
ponents, i.e., a, b, ci, and sum connect to a, b, c, and y of xor3_p, and a,
b, ci, and co connect to a, b, c, and y of maj3_p. This kind of connection
is called an ordered connection. An alternative connection format is to
name each connection explicitly, in which case we are not required to
list every port of an instantiated module according to its declared ports.
Figure 4.18 shows another description for the full-adder of Fig. 4.6 using
the named connection list. This explicit format reduces chance of errors,
and also allows some connections to be left open by not specifying them.

94 Chapter Four

Figure 4.17 Full Adder Verilog Code Using xor and maj

`timescale 1ns/100ps

module add_1bit_p (input a, b, ci, output sum, co);

xor3_p xr1 (a, b, ci, sum);
maj3_p mj1 (a, b, ci, co);

endmodule

Figure 4.18 Named Connection List

`timescale 1ns/100ps

module add_1bit_p_named (input a, b, ci, output sum, co);

xor3_p xr1 (.a(a), .b(b), .c(ci), .y(sum));
maj3_p mj1 (.a(a), .b(b), .c(ci), .y(co));

endmodule

4.3.2 Vector declarations

A module formed as described above can still be used in an upper-level
structure. For example, four instances of add_1bit_p can be used to
form the 4-bit adder of Fig. 4.19.

The Verilog code of Fig. 4.20 corresponds to the diagram of Fig. 4.19.
This description uses four separate instantiations of add_1bit_p of
Fig. 4.17. The timing of this structure is determined by those of its
substructures, i.e., those of and, or, nand, and not gates of xor3_p and
maj3_p.

Figure 4.20 shows declaration of a, b, and s ports of add_4bit as
4-bit vectors. The left-most bits of these vectors is bit 3 and their right-
most bits are bit 0. In Verilog the left-most bit is always the most sig-
nificant. For wiring 4-bit adder input and output vectors to the scalar

Combinational Circuit Description 95

fa_1bit_p

a[3:0]

b[3:0]

ci

s[3:0]

co

add_4bit

c1

c2

c3

a[0]

b[0]

a[1]

b[1]

a[2]

b[2]

a[3]

b[3]
s[3]

s[2]

s[1]

s[0]

fa_1bit_p

fa_1bit_p

fa_1bit_p

Figure 4.19 A 4-bit Adder by Wiring Four Full Adders

ports of the individual full adders, array indexing is used. For exam-
ple bit 1 of the 4-bit adder that is designated by a[1] is connected to port
a of fa1 instance of add_1bit_p. As discussed above, named port con-
nections can also be used for connecting selected bits of a vector to a
scalar input. For example connections to the ports of fa1 can be done
as shown below:

add_1bit_p fa1 (.a(a[1]),.b(b[1],.ci(c1),.sum(s[1]),.co(c2));

In this format, names used after the dots outside of parenthesis are
those of the ports of add_1bit_p module (Fig. 4.17).

4.3.3 Iterative structures

The format used for formation of a 4-bit adder from four full adders
becomes impractical when dealing with large regular multidimensional
structures. For example, if we were to wire a 64-bit combinational array
multiplier, listing 64*64 instances of individual bit multipliers and spec-
ifying the wiring of each of these units would become a very time con-
suming and error-prone task.

For formation of iterative structures and wiring specification of reg-
ular structures, Verilog provides two constructs that are referred to as
array of instances and the generate statement.

4.3.3.1 Array of instances. An array of instances provides an easy way
of instantiating similar modules in a single statement. Using this facil-
ity the 4-bit adder of Fig. 4.20 may be written as shown in Fig. 4.21. As
shown, all four instances of Fig. 4.20 are merged into a vector notation
including instance name of the module being instantiated.

96 Chapter Four

Figure 4.20 4-bit Adder Verilog Code

`timescale 1ns/100ps

module add_4bit (input [3:0] a, b, input ci,
output [3:0] s, output co);

wire c1, c2, c3;

add_1bit_p fa0 (a[0], b[0], ci, s[0], c1);
add_1bit_p fa1 (a[1], b[1], c1, s[1], c2);
add_1bit_p fa2 (a[2], b[2], c2, s[2], c3);
add_1bit_p fa3 (a[3], b[3], c3, s[3], co);

endmodule

In this format, for connection of vectored ports, the name of the vector
should be used. For example, using s, that is a vector, in the port con-
nection list of fa[3:0] connects bits 3 to 0 of this vector to the sum ports
of instances fa[3], fa[2], fa[1], and fa[0] of add_1bit_p. Where a direct
vector connection cannot be made, a vector is created by the concatena-
tion operation. For example, for connection of c3, c2, c1 and ci to ci ports
of instances fa[3], fa[2], fa[1], and fa[0], a vector is formed by concate-
nation of {c3, c2, c1, ci}, and this vector is used in the port connection list
of fa[3:0] to connect to the ci ports of four instances of add_1bit_p module.

4.3.3.2 Generating multiple instances. A more flexible and powerful con-
struct of Verilog for generating multiple similar instantiations is the gen-
erate statement. This construct is concurrent and with its generation
scheme it multiplies any statement or group of statements that is
encloses. A simple format of these constructs is discussed here.

Figure 4.22 shows another version of our 4-bit adder example that is
easily expandable to an adder of any size. Declaration of ports and
intermediate signals in this description are vectors whose sizes depend
on the SIZE parameter.

An n-bit adder has a regular structure, but its right-most and left-most
bits are exceptions. While the carry input of a full adder that is not on
either side of an n-bit adder is taken from the carry output of its right-
hand side full adder, the carry input of the right-most full adder is
driven by the external carry input of the adder. A similar exception
exists for the carry output of the left-most full adder of an n-bit adder.
To put this irregularity into a regular structure, we have declared carry
as a vector of [SIZE:0]. The right-most bit of this vector is driven by ci
of the n-bit adder, and its left-most bit drives co of the adder. Using this
vector, full adder i in an n-bit adder takes its carry input from carry[i]
and puts its carry output on carry[i+1]. This regular structure is
described by the generate statement shown in Fig. 4.22.

Combinational Circuit Description 97

Figure 4.21 4-bit Adder Using Array of Instances

`timescale 1ns/100ps

module add_4bit_vec (input [3:0] a, b, input ci,
output [3:0] s, output co);

wire c1, c2, c3;
add_1bit_p fa[3:0] (a, b, {c3, c2, c1, ci}, s,

{co, c3, c2, c1});

endmodule

A generate statement requires a genvar variable, that needs to be
declared. Using this variable the generate multiplication scheme can use
for, if, case, or a combination or nesting of these statements. For multi-
dimensional array generations, several genvar variables must be used.
Our simple example here uses a generate_loop_statement to generate and
interconnect four copies of the add_1bit_p full-adder.

The generate-for construct shown, loops for i values 0 to 3. In each
iteration it generates and wires a full-adder from bit 0 to 3. The identi-
fier for the for statement used in this example is full_adders. This iden-
tifier is mandatory and is used for referencing individual full-adders or
their internal signals. For example, the sum output of add_1bit_p in
position 3 is referenced by full_adders[3].fa.sum. the Verilog code of the
add_4bit_gen module shows the use of the SIZE parameter. Depending
on this parameter, that can be overridden when add_4bit_gen is instan-
tiated, the generate statement shown expands to SIZE-1 number of
instances of add_1bit_p.

Instead of using the 5-bit carry intermediate signal and the assign
statement of Fig. 4.22, a generate-if can be used as shown in Fig. 4.23.
This statement separates 0 and SIZE-1 instances of add_1bit_p from the
rest of the instances of this module.

98 Chapter Four

Figure 4.22 Adder Using Generate Statement

`timescale 1ns/100ps

module add_4bit_gen (a, b, ci, s, co);
parameter SIZE = 4;
input [SIZE-1:0] a, b;
input ci;
output [SIZE-1:0] s;
output co;
wire [SIZE:0] carry;
genvar i;
assign carry[0] = ci;
assign co = carry[SIZE];

generate
for (i=0; i<SIZE; i=i+1) begin : full_adders

add_1bit_p fa (a[i], b[i], carry[i], s[i], carry[i+1]);
end

endgenerate
endmodule

4.3.4 Module path delay

Verilog delay specifications discussed so far are referred to as distrib-
uted delay. This means that the overall timing of an upper-level com-
ponent, e.g., our 4-bit adder, depends on the time it takes events to
propagate through gates and nets inside this module. In other words,
delays are distributed through out various components of this design.
A module path delay specification, however, describes the time it takes
an event at a source (input or inout port) to propagate to a destination,
e.g., an output. This form of delay specification is also referred to as pin-
to-pin delay.

Module path delays (pin-to-pin) are specified in a specify block inside
a module. A specify block begins with the specify keyword and ends
with endspecify. Within a specify block, input to output path delays
can be specified. Figure 4.24 shows our full adder example with pin-to-
pin delay specifications.

In the specify block shown in this figure, a simple path delay construct
lists a, b, and ci as delay sources and after the *> symbol its lists the
delay destinations that are co in one case, and sum in another. Any time

Combinational Circuit Description 99

Figure 4.23 Using generate-if to From an Adder

`timescale 1ns/100ps

module add_4bit_genif (a, b, ci, s, co);
parameter SIZE = 4;
input [SIZE-1:0] a, b;
input ci;
output [SIZE-1:0] s;
output co;
wire [3:0] carry;
genvar i;

generate
for (i=0; i<SIZE; i=i+1) begin : full_adders
if (i==0) add_1bit_p fa (a[0], b[0], ci, s[0], carry[0]);
else if (i==SIZE-1)

add_1bit_p fa (a[i], b[i], carry[i-1], s[i]co);
else add_1bit_p fa (a[i], b[i],

carry[i-1], s[i], carry[i]);
end

endgenerate

endmodule

a or b or ci changes if, as a result, co changes, it is delayed by 12 ns and
if sum changes, it is delayed by 15 ns. Figure 4.25 shows input to output
delays of the full adder of Fig. 4.24.

Module path delays can coexist with gate level distributed delays.
However, they affect output timing only when they are larger than the
sum of all internal distributed delays. Module paths not specified in a
specify block are considered with 0 pin-to-pin delays, in which case, dis-
tributed delays will be used. To use a different rise than fall, two delay
values enclosed by a set of parenthesis should be used. As with other
delay parameters, min:typ:max delay format may be used in path delays.

As another example of path delays consider the specify block of
add_4bit_p2p module of Fig. 4.26. Path delays shown for a to s and b to
s are full-path, which means an event on any bit of a to a resulting
change on any bit of s is delayed by 31 ns. The same for bits of b to s is
32 ns. In addition, we are specifying the delay from any bit of a, or b or
ci to co as 37 ns.

The specify block of this figure does not specify a path delay for the
situation that an event on ci results in a change on s. Therefore, for this
situation, gate level distributed delays will be used.

100 Chapter Four

Figure 4.24 Module Path Delay Specifications

`timescale 1ns/100ps

module add_1bit_p2p (input a, b, ci, output sum, co);
specify

(a, b, ci *> co) = 12;
(a, b, ci *> sum) = 15;

endspecify

xor3_p xr1 (a, b, ci, sum);
maj3_p mj1 (a, b, ci, co);

endmodule

Figure 4.25 Path Delays Simulation Run

Figure 4.27 shows timing comparison of distributed delays of Fig. 4.20
versus path delays of Fig. 4.26. Signals s1 and co1 are outputs of
add_4bit of Fig. 4.20, and s2 and co2 are outputs of add_4bit_p2p. After
b changes, the distributed delay output goes through several transi-
tions before it reaches its stable value of F. On the other hand, the path
delay output, s2, changes after 32 ns to its stable value. On the other
hand, when ci changes, both s1 and s2 go through transitional distrib-
uted delay values. This is because the specify block of Fig. 4.26 does
not specify a path delay from ci to s. The path delay from ci to co of this
code is 37 ns as shown in Fig. 4.27.

Another path delay specification format in Verilog is what is referred
to as parallel path. This format uses => instead of *> for vector source

Combinational Circuit Description 101

Figure 4.26 Full Path Delay for a 4-bit Adder

`timescale 1ns/100ps

module add_4bit_p2p (input [3:0] a, b, input ci,
output [3:0] s, output co);

wire c1, c2, c3;

specify
(a *> s) = 31;
(b *> s) = 32;
(a, b, ci *> co) = 37;

endspecify

add_1bit_p fa0 (a[0], b[0], ci, s[0], c1);
add_1bit_p fa1 (a[1], b[1], c1, s[1], c2);
add_1bit_p fa2 (a[2], b[2], c2, s[2], c3);
add_1bit_p fa3 (a[3], b[3], c3, s[3], co);

endmodule

Figure 4.27 Comparing Distributed and Path Delays

to destinations. The (a=>s) = 12 path delay specification defines events
on bits of a to similar bits of s to be 12 ns. This means that if an event
on a[1] causes s[1] and s[3] to change, the 12 ns delay only applies to
s[1] and distributed delays will be used for changes on s[3].

4.4 Describing Expressions
with Assign Statements

At a more abstract level than gates or complex gate structures as
described in the previous sections, is the level of describing hardware
using boolean expressions. Verilog uses assign statements for assign-
ing a boolean expression to a wire or a vector of wires (nets). As with
the gate primitives, assign statements allow the use of delays and tri-
state specification. However, the higher abstraction level results in a less
detailed timing specification. This section shows the use of the assign
statement in coding components in Verilog.

Corresponding to a Verilog module, we use a graphical notation to rep-
resent the way the module is coded. Some of the conventions we are using
are discussed in Sec. 4.1 and Sec 4.3. Another convention we use is for rep-
resentation of an assign statement. A logic block described by an assign
statement is represented by a dotted rectangular box (an example is
Fig. 4.62). The right-hand side signals of the assign statement are con-
sidered the inputs of the box and its left-hand side net is the output of
the box.

4.4.1 Bitwise operators

Instead of instantiating individual gates of a hardware structure like the
three-input XOR of the previous sections, a simple boolean expression
using a continuous assign statement can express module functionality.
The xor3 module of Fig. 4.28 takes advantage of this language utility.

As with gate structure outputs, the left-hand side of an assign state-
ment must be a net or a vector of nets. On the right-hand side of an
assign statement, any scalar or vector expression using Verilog opera-
tors can be used. Our xor3 example uses Verilog bitwise ^ operation.

102 Chapter Four

Figure 4.28 xor3 with assign Statement

`timescale 1ns/100ps

module xor3 (input a, b, c, output y);
assign y = a ^ b ^ c;

endmodule

As another example of using an assign statement consider the maj3
module of Fig. 4.29. This example uses & and ! bitwise operators and
uses a 4 ns delay for assignments to the output of maj3.

The delay structure used with an assign statement only allows spec-
ification of rise and fall delays. In our example, the 4-ns delay applies
to rise and fall delays. Verilog allows the use of min:typ:max delay
format for delay values associated with an assign statement.

Multiple independent assign statements are also allowed in a module.
Figure 4.30 shows another version of our add_1bit module of the pre-
vious sections. Such assign statements are regarded as concurrent
statements, and the order of their execution does not depend on the
order in which they appear in a module. An assign statement is said to
be sensitive to its right-hand side events and begins evaluation of its
right-hand side when an event occurs on any of its right-hand side vari-
ables. The result of the evaluation will be scheduled for the left-hand
side net after the specified delay expires.

Real hardware components are regarded as concurrently active ele-
ments. However, true concurrency cannot exist in software execution of
hardware description language (HDL) models of such hardware com-
ponents. Verilog and other HDL simulators model (or, in a way “fake”)
this concurrency by applying event-based execution of statements, as
described earlier.

Combinational Circuit Description 103

Figure 4.29 maj3 with assign Statement

`timescale 1ns/100ps

module maj3 (input a, b, c, output y);
assign #(4) y = (a & b) | (b & c) | (a & c);

endmodule

Figure 4.30 add_1bit using assign Statements

`timescale 1ns/100ps

module add_1bit (input a, b, ci, output s, co);

assign #(10) s = a ^ b ^ ci;
assign #(8) co = (a & b) | (b & ci) | (a & ci);

endmodule

4.4.2 Concatenation operators

We can use concatenation operators on the right or left-hand sides of an
assign statement, for as long as we keep track of proper right-hand side
values assigned to the left-hand side nets. Figure 4.31 shows another
version of a full adder using concatenation operations on the right and
left-hand sides of an assign statement. In the example shown, the
XOR expression is assigned to s and the and-or expression is assigned
to the co output. Delay values used here apply to both outputs, i.e., co,
and s.

4.4.3 Vector operations

An example showing vector operations is shown in Fig. 4.32. In this
example, bitwise XOR operation of bits of a and b is formed on im and
a NOR reduction (~|) of im is generated on eq. The eq output becomes
1 if a and b are equal. In this example, delay values can be specified for
individual assign statements. This circuit is a simple comparator with
an equal output.

Another example of using vector operands is shown in Fig. 4.33. This
odd-even parity circuit also demonstrates that an assign can be shared

104 Chapter Four

Figure 4.32 Bitwise Operation with Vector Operands

`timescale 1ns/100ps

module comp_4bit (input [3:0] a, b, output eq);

wire [3:0] im;
assign im = a ^ b;
assign eq = ~|im;

endmodule

Figure 4.31 Full Adder Using Concatenation

`timescale 1ns/100ps

module add_1bit (input a, b, ci, output s, co);
assign #(3, 4) {co, s} = {(a & b)|(b & ci)|(a & ci), a^b^ci};

endmodule

between various assignments. Individual assignments are separated
with commas. Operations used here are XOR and XNOR reduction. The
specified delays apply to assignments to even and odd output.

A reduction operation applies to two bits at a time starting with the
left-most bit. The description shown in Fig. 4.33 corresponds to two
gate structures one driving odd and one driving the even output.
Negating a reduction first reduces all bits and then negates the result.

4.4.4 Conditional operation

Conditional operation (?:) used with various relational operators pro-
vide convenient mechanisms for description of fairly complex logical
functions.

Figure 4.34 shows Verilog code of a quad 2-to-1 multiplexer circuit.
The assign statement shown, assigns the 4-bit i0 vector to y if s is 0,
and if s is 1 then i1 is assigned to y. If s is ambiguous, i.e., X or Z, then
a vector consisting of all Xs except in those positions that both i1 and
i0 are equal (0 or 1) will be assigned to the left-hand side.

Ambiguous conditions also occur if s is multi-bit and any of its bits are
X or Z. This case also results in a vector of Xs with exception of bits of
the same value. For example if s is ambiguous and i1 is 0Z11 and i2 is
1Z1X, then y receives XX1X. For illustration of how ambiguous values

Combinational Circuit Description 105

Figure 4.34 Conditional Operation Describing a Multiplexer

`timescale 1ns/100ps

module quad_mux2_1 (input [3:0] i0, i1, input s,
output [3:0] y);

assign y = s ? i1 : i0;
endmodule

Figure 4.33 Reduction Operation with Shared Assign

`timescale 1ns/100ps

module parity_gen (input [7:0] a, output even, odd);
assign #(3, 4)

even = ^a,
odd = ~^a;

endmodule

affect a conditional assignment, the testbench of Fig. 4.35 generates an
ambiguous value for the s input of quad_mux2_1. At time 80 ns, this test-
bench puts an ambiguous value on s. The resulting waveform is shown
in Fig. 4.36.

Conditional operations (?:) can be nested to imply a nested if-then-else
expression. The example of Fig. 4.37 describing a 2-to-4 decoder illus-
trates this. The left-hand side of the assign statement concatenates d3,
d2, d1, and d0 outputs of the decoder to form a 4-bit vector. This vector
receives 0001, 0010, 0100, or 1000 if {a, b} is 0, 1, 2, or 3, respectively.
The {a, b} concatenation forms a 2-bit select vector in which a is the most
and b is the least significant bit. The order of evaluation of nested con-
ditional operators is from left to right.

The example of Fig. 4.37 uses the == equality operator to check {a, b}
against its four possible values. This operator returns a 1 if bit-by-bit
matching of its operands occurs, provided they are 0 or 1 (known values).

106 Chapter Four

Figure 4.36 Ambiguous Values in Condition Operation

Figure 4.35 Testbench Generating an Ambiguous Value on s

`timescale 1ns/100ps

module test_quad_mux2_1;
reg [3:0] i0, i1;
reg s;
wire [3:0] y;
quad_mux2_1 MUT (i0, i1, s, y);
initial begin

i0=4’b1010; i1=4’b0101; s=1’b0;
#20 i0=4’b0000;
#20 s=1’b1;
#20 i1=4’b1111;
#20 i0=4’b0z11; i1=4’b1z1x; s=1’bz;
#20 $finish;

end
endmodule

An X or a Z in any bit position of the operands of an equality operator
results in an X. In Fig. 4.37, the last value 4’b0000 is put on the out-
puts if none of the equality checks before it succeed.

Figure 4.38 shows another example of using relational and equality
operators. a>b returns a 1 if a is greater than b, the same applies to a==b
and a<b. The 1-bit values obtained from these operations are assigned
to the comparator outputs of the comp_4bit module of this figure.

In this circuit, an X or a Z in any bit position of the inputs a or b,
causes an X to be assigned to all three outputs of the circuit.

As our last example of use of condition operators in conjunction with
relational and equality operators consider the cascadable comparator of
Fig. 4.39. This comparator has two 4-bit data inputs, three compare
outputs, and three control inputs (gt, eq, and lt) for cascading purposes.

The a_gt_b output becomes 1 if a>b or if a==b and the gt input is 1.
The a_lt_b output is similar. The a_eq_b output becomes 1 if a is equal

Combinational Circuit Description 107

Figure 4.37 Nested Condition Operations

`timescale 1ns/100ps

module dcd2_4 (input a, b, output d0, d1, d2, d3);
assign

{d3, d2, d1, d0} = ({a, b} == 2’b00) ? 4’b0001 :
({a, b} == 2’b01) ? 4’b0010 :
({a, b} == 2’b10) ? 4’b0100 :
({a, b} == 2’b11) ? 4’b1000 :
4’b0000;

endmodule

Figure 4.38 4-bit Comparator Using Relational and Equality Operators

`timescale 1ns/100ps

module comp_4bit (input [3:0] a, b,
output a_gt_b, a_eq_b, a_lt_b);

assign
a_gt_b = (a>b),
a_eq_b = (a==b),
a_lt_b = (a<b);

endmodule

to b and the eq input is 1. This procedure is described by three assign-
ments to a_gt_b, a_eq_b, and a_lt_b outputs in the Verilog code of
Fig. 4.40.

4.4.5 Arithmetic expressions in assignments

Use of arithmetic expressions for description of hardware functions pro-
vides a more abstract form of hardware representation than expres-
sions dealing with boolean functions or bit-level details. Verilog allows
the use of arithmetic expressions in forming expressions describing
hardware. Arithmetic operators are +, -, *, /, **, and %. Generally, these
operators are used in behavioral and RT level hardware descriptions.

As an example consider a 4-bit adder with a carry-in and a carry-out.
In the Verilog code of Fig. 4.41, a, b and ci are added together on the

108 Chapter Four

Figure 4.40 Cascadable Comparator Verilog Code

`timescale 1ns/100ps

module comp_4bit (input [3:0] a, b, input gt, eq, lt,
output a_gt_b, a_eq_b, a_lt_b);

assign
a_gt_b = (a==b) ? gt : (a>b),
a_eq_b = (a==b) ? eq : 1’b0,
a_lt_b = (a==b) ? lt : (a<b);

endmodule

a[3:0]

b[3:0]

comp_4bit

a_eq_b

a_gt_b

a_lt_b

gt

eq

lt

Figure 4.39 Cascadable 4-bit Comparator

right-hand side of an assign statement. Adding ci that is a 1-bit
unsigned operand of + causes it to be padded with 0s to turn it into a
4-bit vector. The result of the add operation generates a 5-bit result in
which the left-most bit is the carry and the other four bits constitute the
sum. On the left-hand side of the assign statement, concatenation of co
and s captures the 5-bit result.

Verilog is very forgiving in size mismatches in assignments and oper-
ations. As seen here vectors of different bits are added together and the
operands are expanded according to the type of expression being signed
or unsigned. Assignments to left-hand sides will be truncated if the left-
hand side has fewer bits than the right-hand side.

4.4.6 Functions in expressions

Functions help design modularity and reuse. Verilog functions can be
used for test data, management, response analysis, or for describing
hardware blocks or boolean functions. Figure 4.42 demonstrates the
use of functions for describing boolean functions.

Combinational Circuit Description 109

Figure 4.42 Using Functions

`timescale 1ns/100ps

module add_1bit_f (input a, b, ci, output s, co);

function [1:0] adder (input a, b, c);
begin

adder = {(a & b)|(b & c)|(a & c), a^b^c };
end
endfunction

assign #(3, 4) {co, s} = adder (a, b, ci);

endmodule

Figure 4.41 A 4-bit Adder

`timescale 1ns/100ps

module add_4bit (input [3:0] a, b, input ci,
output [3:0] s, output co);

assign { co, s } = a + b + ci;
endmodule

The adder function of the above example has a 2-bit output vector. As
shown, the inputs are a, b, and c. In the body of this function the func-
tion name is given the return value of the function. In the body of the
add_1bit_f module, this function is used on the right-hand side of an
assign statement. On the left-hand side of this statement concatenation
of co and s capture the two bits of this function. The time delays #(3, 4)
apply to rise and fall of co and s when receiving values calculated by the
adder function.

The way the adder function is used in this example, only the
add_1bit_f module can use it. If other modules are to take advantage of
a function, the function must be defined in a separate file, and included
where needed by the `include directive.

In writing and using functions, several guidelines should be used.
The following paragraph discusses function inputs and output, function
body, function calls, and timing.

The function name is a variable via which a function returns its value.
This variable, and thus, the return value can be a scalar or a vector. A
function requires at least one input, which can be a scalar or a vector.
In the body of a function, procedural statements are used to define a
mapping of function inputs to the output of the function. Timing state-
ments are not allowed inside a function. Nonblocking procedural assign-
ments are not allowed in a function. When calling a function, the order
of the arguments must be according to the declaration of function inputs.
Calling is done by using the name of the function on the right-hand side
of an expression. Calling several functions can be nested.

4.4.7 Bus structures

In an RT level description, a bus is referred to as a shared vector that is
driven by logic units, registers, memories, circuit inputs, or other busses.
For every source, a bus has a select input that selects its corresponding
source to drive the bus. Selecting multiple sources causes bus contention
which can produce different results depending on the bus type. Bus des-
tinations are all those hardware units that read the bus. Usually, mul-
tiple simultaneous readings of a bus do not cause any problems.

Figure 4.43 shows a bus structure with several sources and destina-
tions. Select lines are single bit control lines, and the width of the bus
and its sources and destinations is n. A Seli select line selects Sourcei
for driving the bus.

What happens when several Sel lines are simultaneously active
depends on the type of the bus. In such cases, the information on the
bus is useless, but may be different from one bus type to another. Verilog
allows the use of wire, (tri), wand (triand), wor (trior), tri0, and
tri1 for bus types. In a tri bus (wire), the output of the bus when it is

110 Chapter Four

simultaneously driven by multiple sources is the bit-by-bit wiring result
of all its active sources. In a triand bus (wand), this becomes bit-by-
bit ANDing of all active sources, and in a trior bus (wor), the function
of each bit of a bus is the OR result of all its active sources. Figure 4.44
shows various bus type declarations for the bus of Fig. 4.43. The inac-
tive value for a wire bus is Z. This means that a source not driving such
a bus puts Z’s on the bus. Inactive values for a wand and a wor bus
are 1 and 0, respectively.

An assign statement is the most common language construct for
making source assignments to a bus. For a wire type bus, assignments
shown in Fig. 4.45 specify sources of this bus. Assignments to wand and
wor type busses are only different from those shown in Fig. 4.45 in the
value of the inactive parameter. For wand this parameter is n’b11...1,
and for wor it is n’b00...0.

4.4.8 Net declaration assignment

Verilog allows combining net declarations and assign statements. As
delay associated with assign statements correspond to gate level delays,
those associated with net declarations correspond to wire delays. A
simple example demonstrating the net declaration assignment is shown
in Fig. 4.46. This example shows an AND-OR multiplexer in which
ANDing s and ~s with i0 and i1 data inputs is done with net declara-
tion assignments and ORing the results is done by an assign statement.

Combinational Circuit Description 111

n

n n n n

Source1 Source2 Source3 Sourcem

Dest1 Dest2 Dest j

Sel1 Sel2 Sel3 Selm

BUSA

....

....

Figure 4.43 A Bus System

Figure 4.44 Bus Type Declarations

wire [n-1 : 0] BUSA;
. . .
wand [n-1 : 0] BUSA;
wor [n-1 : 0] BUSA;

4.5 Behavioral Combinational Descriptions

As discussed before, assign statements of Sec. 4.4 provided a higher-level
of abstraction over primitive based designs of Sec. 4.3. In the same way,
procedural statements provide a mechanism for describing hardware at
still a higher level of abstraction than any of the formats discussed so
far. This level of abstraction is often referred to as the behavioral level.

Verilog’s procedural blocks are bodies within which statements are exe-
cuted sequentially. This form of hardware description is, generally, easier
for designers to describe their complex hardware. Procedural bodies do pro-
vide mechanisms for specification of timing, but, in general, a hardware
described with procedural structures contains less timing details than a
hardware described with assign statements or primitives.

In this section we first present basics of procedural blocks, we will then
discuss timing and flow control in procedural blocks. Various types of
statements and their simulation semantics and hardware implications

112 Chapter Four

Figure 4.45 wire Type Bus Assignment

wire [n-1 : 0] BUSA;
parameter [n-1 : 0] inactive = n’bZZ...Z;

assign BUSA = Sel1 ? Source1 : inactive;

assign BUSA = Sel2 ? Source2 : inactive;
.
.
.

assign BUSA = Selm ? Sourcem : inactive;

Figure 4.46 Using net Declaration Assignments

`timescale 1ns/100ps

module mux2_1 (input i0, i1, s, output y);

wire #(0.6, 0.8)
im0 = i0 & ~s,
im1 = i1 & s;

assign #(3, 4) y = im0 | im1;

endmodule

will be discussed next. After a thorough presentation of the mechanics
of procedural blocks, we will show high-level-language constructs such
as if-else and case statements that are used for a behavioral descrip-
tion of hardware.

The graphical notation that we started presenting in Sec. 4.1 com-
pletes in this section. Recall that, hollow boxes in a graphical notation
of a Verilog code correspond to module instantiations, and dotted boxes
are for assign statements. In the examples that follow, a gray shaded
box used in a rectangular box of a module represents the use of a pro-
cedural block in the module. For such a box, inputs are signals in the
sensitivity list of the procedural block and outputs of the gray box are
variables and signals that appear on the left-hand side of assignments
in the procedural block. Figure 4.58 is an example of this notation.

4.5.1 Simple procedural blocks

Any of the circuits of the previous section can be described with proce-
dural blocks. We will use our xor3 and maj3 examples to demonstrate
some of the main concepts of this Verilog construct.

Figure 4.47 shows the xor3 module using an always statement. This
statement is a procedural statement and within its body all statements are
executed sequentially. An always statement begins with the always key-
word and can enclose any number of procedural statements. Variables
used on left-hand side of procedural statements must be of type reg. The
reg type can be declared separately in the module body or if it is an output
that is a reg, it can be declared along with the output declaration.

An always block has an implicit infinite loop, causing it to run for-
ever unless halted by flow control statements. Examples of flow control
statements are timing and event control statements.

4.5.2 Timing control

Following the always keyword in Fig. 4.47, the always block contains
an event control statement. This statement that begins with an @ sign

Combinational Circuit Description 113

Figure 4.47 A Simple Use of an always Block

`timescale 1ns/100ps

module xor3 (input a, b, c, output y);
reg y;

always @(a, b, c)
y = a ^ b ^ c;

endmodule

halts the flow into the body of the always statement until an event
occurs on any of the signals listed, i.e., a or b, or c. An event control (like
that of our example) right at the beginning of an always block is referred
to as the procedural block’s sensitivity list. It is said that this block is
sensitive to events on its sensitivity list. This is like using these same
variables on the right-hand side of an assign statement. When an event
occurs on a variable on the right-hand side of an assign statement, the
right-hand side is calculated and the calculated value is assigned to the
left-hand side net. In an always statement, an event on a variable in
its sensitivity list causes it to wake up and execute the procedural state-
ment(s) in its body. The sensitivity list of an always statement provides
an added flexibility to choose variables instead of the default of all right-
hand side variables as it is with the continuous assign statements.

In the example of Fig. 4.47, when an event occurs on a, b, or c, the
right-hand side of the assignment to y reg is executed and the calculated
value is assigned to y. This variable retains its value until the next time
a new value is assigned to it.

Another example for a simple always statement is shown in Fig. 4.48.
In this example the reg type for y is specified with its output declara-
tion. Another difference between this example and the xor3 module is
the use of begin and end keywords.

Multiple procedural statements within the body of a procedural block
must be bracketed by begin and end keywords. In our maj3 example,
the begin-end bracketing encloses only one procedural statement and
is not mandatory. However, this bracketing helps readability of a code
and allows insertion of new procedural statements for module debug-
ging or modifications.

An event-control statement that begins with the @ sign is a regular
procedural statement and can appear any where in a procedural block.

114 Chapter Four

Figure 4.48 Majority Circuit Using an always Block

`timescale 1ns/100ps

module maj3 (input a, b, c, output reg y);

always @(a, b, c)
begin

y = (a & b) | (b &c) | (a & c);
end

endmodule

As shown in the example of Fig. 4.49, the begin-end bracketing encloses
two procedural statements separated by a semicolon.

A flow control statement, like the event control of Fig. 4.49, can attach
to its succeeding statement to form a combined procedural statement by
removing their separating semicolon. This means that the semicolon
after the @(a, b, c) statement in Fig 4.49 is optional. When this mergence
of the two procedural statements occurs, only one statement is formed,
and then again, the begin-end bracketing becomes optional. Separating.
signals and variables of an event control statement can be done by
commas (as above) or use of the or operation. The @ (a or b or c) state-
ment is equivalent to what is shown above.

Another type of a timing control statement is a delay control state-
ment. This statement begins with a sharp sign (#) and in the set of
parenthesis that follows it contains a delay expression that halts the flow
of the procedural block until the specified delay expires. The parenthe-
sis following # can be eliminated if a single delay value is used. Like an
event control statement, a delay control statement merges with its pro-
ceeding procedural statement by removing their separating semicolon.

Figure 4.50 shows another version of the maj3 circuit that uses an
event and a delay control statement. The control statements and the pro-
cedural assignment are merged into a single statement by removing

Combinational Circuit Description 115

Figure 4.49 Bracketing Multiple Procedural Statements

`timescale 1ns/100ps

module maj3 (input a, b, c, output reg y);

always begin
@(a, b, c)
y = (a & b) | (b & c) | (a & c);

end

endmodule

Figure 4.50 Maj3 with Delay and Event Control Statements

`timescale 1ns/100ps

module maj3 (input a, b, c, output reg y);
always @(a, b, c) #5 y = (a & b) | (b &c) | (a & c);

endmodule

their separating semicolons. This mergence eliminates the need for
begin-end bracketing needed for multiple procedural statements.

When an event occurs on a, b, or c, flow into this block begins. This is
immediately halted by the #5 delay control statement. When this delay
elapses, evaluation of the right-hand side of y begins. The calculated
value is then assigned to the y reg. The flow into this block is blocked
until y receives its new value. After this, the flow into this always block
goes back to its sensitivity list, waiting for another event on a, b, or c.

4.5.3 Intra-assignment delay

Another form of delay specification in procedural statements is intra-
assignment delay. Unlike the delay control statement that is by itself a
separate procedural statement, an intra-assignment delay (or event) is
considered as part of an assignment. Figure 4.51 shows our maj3 exam-
ple using a 5 ns intra-assignment statement.

The way the always statement of this figure is executed is different
than that of Fig. 4.50, discussed in Sec. 4.5.2. The flow into the always
block of Fig. 4.50 begins when an event occurs on a, b, or c. Following
such an event, the right-hand side of y is immediately evaluated (instead
of waiting for 5 ns as is done in the code of Fig. 4.50). The result of eval-
uation of the right-hand side of y will be held for 5 ns and after this time
elapses this result will be assigned to y. While waiting for this time to
elapse, the flow of the always block is blocked.

The difference in simulation of the intra-assignment delay versus the
delay control of Fig. 4.50 is that, after an event on a, b, or c code of Fig. 4.51
waits 5 ns before reading new values of a, b, and c for evaluating the
right-hand side of y. However, in Figure 4.51, the reading of a, b, and c
is done immediately after an event occurs on any of these signals. If in
the 5 ns delay of the intra-assignment delay a, b, or c changes, the new
value does not affect the value of y.

4.5.4 Blocking and nonblocking
assignments

Procedural assignments discussed so far in this chapter are all of the block-
ing type. This means that while the assignment is taking place, the flow

116 Chapter Four

Figure 4.51 Using Intra-Assignment Delay in maj3

`timescale 1ns/100ps

module maj3 (input a, b, c, output reg y);
always @(a, b, c) y = #5 (a & b) | (b &c) | (a & c);

endmodule

of the program into the procedural block is halted (or blocked). This is
especially noticeable when using intra-assignment delays as discussed
above. A different type of procedural assignment is a nonblocking assign-
ment that uses <= instead of =. This type of assignment schedules its
right hand side into the left-hand side reg and continues on to the next
statement.

Figure 4.52 shows a full-adder circuit using two procedural blocking
assignments with intra-assignment delays for generating s and co out-
puts. After a change on a, b, or ci, current values of these inputs are read
and used for evaluating s. This new value will be assigned to the s
output after 5 ns, while flow into the procedural block is blocked.

After this delay elapses, a, b, and ci are read again and the new value
for co is evaluated. This value will be assigned to co after 8 ns (5+3 = 8 ns
from the time of the first event on an input). This timing has the potential
problem of reading a different set of input values for calculating s and co.

The use of nonblocking assignments resolves the above said problem
and at the same time makes the timings of the two statements inde-
pendent. Figure 4.53 shows the full-adder circuit using nonblocking
assignments with intra-assignment delays. After an event on a, b, or c,
the right-hand side of s is evaluated and the new value is scheduled into
s for 5 ns later. At the exact same time, the right-hand side of co is eval-
uated and scheduled into this output for 3 ns later. Output s receives
its new value after 5 ns, and co receives its new value 3 ns if an input
changes. In this case, delay values do not accumulate.

Verilog allows multiple procedural blocks in a module. Such state-
ments have independent timings and are executed concurrently. The
Verilog code of Fig. 4.54 shows another version of our full-adder using
two always statements. Because the sensitivity list of these statements
contains the same set of inputs, an event on an input begins the flow of
both always statements simultaneously. The result is that assignments

Combinational Circuit Description 117

Figure 4.52 Blocking Assignments

`timescale 1ns/100ps

module add_1bit (input a, b, ci, output s, co);
reg s, co;
always @(a, b, ci)
begin

s = #5 a ^ b ^ ci;
co = #3 (a & b) | (b &ci) | (a & ci);

end
endmodule

to co and s are executed independent of each other and each uses its own
delay value.

4.5.5 Procedural if-else

Examples discussed thus far demonstrated the use of procedural block
assignment types and timings. In this and the sections that follow, we
will show the use of higher-level procedural statements in procedural
blocks. These statements include if-else, while, case, and for, and are
referred to as control flow statements.

Figure 4.55 shows an if-else statement used for describing a 2-to-1
multiplexer. The always block shown is sensitive to multiplexer inputs.
The body of this statement contains an if-else statement. Since this
entire statement is considered as a single procedural statement, the
use of begin-end bracketing is optional.

If the condition of the if part of an if-else statement becomes 1, the
procedural statement in the if part is taken, otherwise if the condition
expression is 0, Z, or X, the else part is taken. The if part and the else
part can contain any other procedural statement such as if-else or case
statements.

118 Chapter Four

Figure 4.53 Nonblocking Assignments

`timescale 1ns/100ps

module add_1bit (input a, b, ci, output s, co);
reg s, co;

always @(a, b, ci) begin
s <= #5 a ^ b ^ ci;
co <= #3 (a & b) | (b &ci) | (a & ci);

end

endmodule

Figure 4.54 Full adder Using Two Independent always Blocks

`timescale 1ns/100ps

module add_1bit (input a, b, ci, output reg s, co);
always @(a, b, ci) #3 co = (a & b) | (b &ci) | (a & ci);
always @(a, b, ci) #5 s = a ^ b ^ ci;

endmodule

Another example of using an if-else statement, which also shows the
use of arithmetic expressions and generation of carry, is shown in Fig. 4.56.
This example is an adder/subtractor circuit that adds its vector operands
if m is 1 and subtracts if m is 0. This circuit is described by an always
statement that is sensitive to a and b 4-bit vectors and ci and m input
signals. When a vector appears in an event control statement, a change
in any of the vector bits triggers the event.

When the flow begins in the always block, the value of m is checked.
If it is 1, then the add result of a, b and ci is assigned to concatenation
of co and s. Otherwise, if m is 0, Z, or X, subtraction is done. This causes
the most significant bit of the add or subtraction operation result to be
given to the co output.

Combinational Circuit Description 119

Figure 4.55 Multiplexer Using if-else

`timescale 1ns/100ps

module mux2_1 (input i0, i1, s, output reg y);

always @(i0, i1, s) begin
if (s==1’b0)

y = i0;
else

y = i1;
end

endmodule

Figure 4.56 Adder/Subtractor using if-else

`timescale 1ns/100ps

module add_sub_4bit (input [3:0] a, b, input ci, m,
output reg [3:0] s, output reg co);

always @(a, b, ci, m)
if (m)

{ co, s } = a + b + ci;
else

{ co, s } = a - b - ci;

endmodule

If the if-condition contained a vector, any non-ambiguous (i.e., not con-
taining X or Z) non-zero value would cause the if-part to be taken. In
coding combinational circuits, it is recommended that the last else of a
group of nested if-else statements appears without an if. This gives a
default case to the nested statements which will be taken if conditions
of the preceding if-statements are not satisfied. Failure to do so, may
cause certain variables to retain their old values, which will imply
latches on these variables.

4.5.6 Procedural case statement

Another flow control statement of Verilog is a case statement. For larger
number of selections, this statement is more convenient than nested if-
else statements. A case statement has a case expression that is com-
pared with all its case alternatives. A procedural statement that follows
a case alternative is taken if the case expression value matches the value
of the case alternative.

Figure 4.57 shows a 2-to-4 decoder that uses a case statement. The
a, b inputs are regarded as its 2-bit encoded input (a is the most sig-
nificant bit). The {a, b} vector becomes the case expression of this state-
ment and is compared with 00, 01, 10, 11 that are the case statement’s
case alternatives. When a match is found, the corresponding encoded
output appears on {d3, d2, d1, d0} outputs of the decoder.

The last case alternative in the dcd2_4 module is default. If none of
the other case alternatives match the case expression, the default is
taken. This is necessary to assign a value to the {d3, d2, d1, d0} output

120 Chapter Four

Figure 4.57 Decoder Using case Statement

`timescale 1ns/100ps

module dcd2_4 (input a, b, output reg d0, d1, d2, d3);

always @(a, b) begin
case ({ a, b })

2’b00 : { d3, d2, d1, d0 } = 4’b0001;
2’b01 : { d3, d2, d1, d0 } = 4’b0010;
2’b10 : { d3, d2, d1, d0 } = 4’b0100;
2’b11 : { d3, d2, d1, d0 } = 4’b1000;
default: { d3, d2, d1, d0 } = 4’b0000;

endcase
end

endmodule

if an invalid value appears on the {a, b} input. If this is not done and an
invalid or ambiguous (X or Z on a or b) value appears on {a, b}, then
the output will retain its old value. Retaining the old value not only
causes an output to have an erroneous value, it also implies a latched
output. Since we are modeling a combinational circuit, latches on our
outputs are not allowed. Using a default as the last case alternative is
recommended in all Verilog models. This is equivalent to the last else
without an if in a nesting of if-else statements, which is done for pre-
venting latches.

We will use a different type of a case statement for describing the
arithmetic logical unit (ALU) of Fig. 4.58. As shown, the ALU has a
two-bit f input that selects its function.

The Verilog code of Fig. 4.59 describes this ALU. We are making this
an n-bit ALU by declaring the N parameter and using this constant in
input and output declarations. This parameter can be overridden when
the alu_n_bit module is instantiated.

As shown, the function of the ALU is described by an always state-
ment that is sensitive to all ALU inputs. A casez statement, instead of
a case statement, is used to select ALU functions depending on its f
input.

Unlike a case statement that treats all Xs and Zs in the case expres-
sion as ambiguous, a casez treats Zs as don’t cares. If the value of f con-
tains a Z, that bit position matches a 0, 1, or a Z in the same bit position
of the case alternatives. For example f = 0Z matches 00, 01, and 0Z case
alternatives. In our example, because case alternatives are examined
sequentially, f of 0Z matches 00 first, which causes the ALU to perform
the a+b operation.

This ALU example adds, subtracts, ANDs, or XORs its inputs depend-
ing on f. If f contains an X the default alternative is taken which puts
a 0 on the output. Our ALU performs n-bit operations and puts the
result in its n-bit output. Therefore, carry from add and subtract oper-
ations is ignored.

Combinational Circuit Description 121

a[N-1:0]

b[N-1:0]

alu_n_bit

y[N-1:0]

f[1:0]

Figure 4.58 A Simple 4-bit ALU

Another form of a case is casex. In this case all X and Z values in
the case alternative or case expression are treated as don’t cares.

4.5.7 Procedural for statement

A for statement is a procedural statement that is used for indexed loop-
ing. As with other procedural statements, this statement can be used
inside an always or an initial statements, as well as in functions or user
defined tasks. Furthermore, this statement can be nested or combined with
other procedural statements. For example, a case alternative can contain
a for statement. An example of a for statement is shown in Fig. 4.60.

The priority encoder of Fig. 4.60 gives highest priority to its i3 input,
and generates an index of its active high priority input on its y1, y0
output. For example if i2 and i0 are both active y1, y0 becomes 2. Since
all ports of this circuit are scalars, we have used concatenation opera-
tors to form input and output vectors for this circuit. The im four-bit
vector corresponds to the four inputs of this circuit. The f output becomes
1 if at least one input is active. This flag distinguishes between the sit-
uations when only i0 is 1 and when none of the inputs are active.

The always block of Fig. 4.60 is sensitive to im, which represents cir-
cuit inputs. In this always block all circuit outputs are initially set to their

122 Chapter Four

Figure 4.59 ALU Using casez

`timescale 1ns/100ps

module alu_n_bit (a, b, f, y);
parameter N=4;
input [N-1:0] a, b;
input [1:0] f;
output [N-1:0] y;
reg [N-1:0] y;
always @ (a, b, f)
begin

casez (f)
2’b00 : y = a + b;
2’b01 : y = a - b;
2’b10 : y = a & b;
2’b11 : y = a ^ b;
default: y = 0;

endcase
end

endmodule

inactive (zero) values. This is a good practice which guarantees that no
output retains its value from a previous activation of the always block.

The for statement in this always block uses indx for its index. This
index is initialized to 0, its final value is less than 4 (indx <4), and is
incremented by 1 (indx = indx + 1). The indx variable is declared as a
3-bit reg to allow it to take values between 0 and 4. In the body of the
for procedural statement an if statement sets the proper indx value cor-
responding to the high-priority active input to the {y1, y0} output of the
circuit.

In this example, our if statement does not use a final else, which con-
tradicts our recommendations for completeness of all cases. However,
since our outputs are initially set to their inactive values at the begin-
ning of the always block, they will never be able to retain their old
values. Therefore, the last else part for making sure that the outputs do
receive some values, and thus avoiding output latches, is not necessary.

4.5.8 Procedural while loop

Unlike a for loop that has a fixed looping procedure based on an index,
a while loop is more flexible in terms of specification of looping conditions.

Combinational Circuit Description 123

Figure 4.60 Priority Encoder using for

`timescale 1ns/100ps

module priority_encoder (input i0, i1, i2, i3,
output reg y1, y0, f);

wire [3:0] im = { i3, i2, i1, i0 };
reg [2:0] indx;

always @(im) begin
{ y1, y0 } = 2’b00;
f = 1’b0;
for (indx=0; indx<4; indx=indx+1)
begin

if (im[indx])
begin

{ y1, y0 } = indx;
f = 1’b1;

end
end

end
endmodule

An example while loop is shown in the Verilog code of Fig. 4.61. The
parity_gen module is an n-bit parity generator. The size of its input
vector is specified by the SIZE parameter. The while loop that handles
generation of the parity is in an always block that is sensitive to the
input of the circuit. Each time through the while loop, a partial parity
is calculated and an index is incremented. Looping continues for as long
as the index is less than SIZE.

The code shown in Fig. 4.61 is only for the purpose of demonstrating
the use of the while loop. Generating parity can be done much easier
than what is done in this example. E.g., a reduction XOR operator is all
that is needed to generate parity of a vector.

4.5.9 A multilevel description

All coding styles discussed so far, i.e., gate instantiations, continuous
assignments, module instantiations, and various forms of behavioral
descriptions can be combined into a complete design description.

Figure 4.62 shows the diagram of a 4-bit 4-function ALU with overflow,
parity and compare outputs, and a tri-state data output. This ALU has

124 Chapter Four

Figure 4.61 Parity Circuit using while

`timescale 1ns/100ps

module parity_gen (a, p);

parameter SIZE = 8;
input [SIZE-1:0] a;
output reg p;

reg im_p;
integer indx;

always @(a) begin
im_p = 0;
indx = 0;
while (indx < SIZE)
begin

im_p = im_p ^ a[indx];
indx = indx + 1;

end
p = im_p;

end

endmodule

four subcomponents for performing arithmetic operations, generating
compare outputs, generating parity, and making the output tri-state.

Figure 4.63 shows the Verilog code that corresponds to the block dia-
gram of Fig. 4.62. The arithmetic part of the ALU is handled with an
always block (labeled arithmetic) that uses a case statement for select-
ing the ALU operation based on f. The output of this part goes on im_y,
which is the ALU’s intermediate output before it goes through the output
tri-state logic. The compare outputs are generated in an always block
(labeled compare) that is sensitive to a and b that are the operands
being compared. This always statement uses an if-else statement for
assigning appropriate values to a_gt_b, a_eq_b, and a_lt_b outputs.

The parity output of the ALU performs XOR reduction on its internal
im_y output of the arithmetic part. The last part of the alu_4bit module
of Fig. 4.63 takes the im_y output and if oe (output enable) is active it
puts it on the y output of the module. If oe is 0, y becomes all Z’s.

4.6 Combinational Synthesis

Discussions so far in this chapter have concentrated on general coding
styles for describing hardware. On the other hand, an important con-
cern of any designer is translation of his or her code into hardware. As

Combinational Circuit Description 125

a[3:0]

alu_4bit

im_y[3:0]

ov

oe

y[3:0]

p

a_gt_b

a_eq_b

a_lt_b

b[3:0]

f[1:0] a
r
i
t
h
m
e
t
i
c

c
o
m
p
a
r
e

T
r
i
_
s
t
a
t
e

parity_gen

Figure 4.62 Block Diagram of a Multi-Function ALU

126 Chapter Four

Figure 4.63 Verilog Code of a Multi-Function ALU

`timescale 1ns/100ps

module alu_4bit (a, b, f, oe, y, p, ov, a_gt_b,
a_eq_b, a_lt_b);

input [3:0] a, b;
input [1:0] f;
input oe;
output [3:0] y;
output p, ov, a_gt_b, a_eq_b, a_lt_b;
reg ov, a_gt_b, a_eq_b, a_lt_b;

reg [4:0] im_y;

always @(a or b or f) begin : arithmethic
ov = 1’b0;
im_y = 0;
case (f)

2’b00 :
begin

im_y = a + b;
if (im_y>5’b01111) ov = 1’b1;

end
2’b01 :

begin
im_y = a - b;
if (im_y>5’b01111) ov = 1’b1;

end
2’b10 : im_y[3:0] = a & b;
2’b11 : im_y[3:0] = a ^ b;
default: im_y[3:0] = 4’b0000;

endcase
end

always @(a or b) begin : compare
if (a > b) { a_gt_b, a_eq_b, a_lt_b } = 3’b100;
else if (a < b) { a_gt_b, a_eq_b, a_lt_b } = 3’b001;
else { a_gt_b, a_eq_b, a_lt_b } = 3’b010;

end

assign p = ^ im_y[3:0];

assign y = oe ? im_y[3:0] : 4’bz;

endmodule

discussed in Chap. 1, a synthesis tool is used for automated translation
of Verilog code of a design into hardware. It is important that the same
code developed by a hardware designer and simulated for functional ver-
ification can be directly fed to a synthesis tool. This way, the designer
is sure that what he or she gets after synthesis is what has been veri-
fied by simulation. Although, synthesis and synthesizability of codes pre-
sented were not mentioned directly, except for timing parameters all
codes presented thus far in this chapter are synthesizable. Timing
parameters specify detailed physical characteristics of a hardware com-
ponent. Furthermore exact gate and wire delays cannot be known until
a design is completely synthesized, mapped to its target library, and spe-
cific placement and routings are done. Therefore, timing parameters
specified in a presynthesis description are either not allowed by a syn-
thesis tool or they are ignored.

This section focuses on specific coding styles that are synthesizable.
We discuss gates, continuous assignments and behavioral coding styles.

4.6.1 Gate level synthesis

Gate level designs are synthesizable; however most synthesis tools do
not allow use of user defined primitives. Switch level primitives are
also not allowed in a presynthesis description. Tri-state gates are
allowed, but if a target technology does not support them, a warning
message is issued by the synthesis tool. The message indicates the
replacement of the tri-state structures by equivalent logic functions.

Figure 4.64 shows a full-adder circuit with s and co outputs. The
Verilog code that corresponds to this structure is shown in Fig. 4.65. This
code synthesizes to a logical circuit with the same functionality as that

Combinational Circuit Description 127

x
fa_1bit

ci

co

sy

im1

im2

im3

Figure 4.64 A Gate level Full Adder

of Fig. 4.64. However, the exact postsynthesis hardware of this circuit
may be very different than this diagram.

4.6.2 Synthesizing continuous assignments

Continuous assignments in any of the forms discussed in Sec. 4.4 are
synthesizable. Multiple assignments are also allowed in synthesis.
Generally, a synthesis tool performs logic optimizations, which enables
designers to focus more on design functionality than having to get into
the details of gate or structure level optimizations.

Figure 4.66 shows a 4-bit comparator with gt, eq, and lt outputs. We
have used assign statements with conditional statements for ease of
expressing functionality of the outputs of this circuit. After optimiza-
tions, the hardware that this synthesizes to would be no different than
a presynthesis code that uses logic gates for generating compare outputs.

128 Chapter Four

Figure 4.65 Synthesizable Gate Level Verilog Code

module fa_1bit (x, y, ci, s, co);
input x, y, ci;
output s, co;

wire im1, im2, im3;

xor (s, x, y, ci);
and (im1, x, y),

(im2, y, ci),
(im3, ci, x);

or (co, im1, im2, im3);

endmodule

Figure 4.66 Synthesizable Code Using Assign Statements

module compartor (a, b, gt, eq, lt);
input [3:0] a, b;
output gt, eq, lt;
assign gt = (a>b) ? 1’b1 : 1’b0;
assign eq = (a==b) ? 1’b1 : 1’b0;
assign lt = (a<b) ? 1’b1 : 1’b0;

endmodule

Bussing and tri-state assignments like those of Fig. 4.45 are synthe-
sizable, but like the tri-state gates, if a synthesis target library does not
support tri-state structures it replaces tri-state busses with AND-OR
busses and issues proper warning messages.

4.6.3 Behavioral synthesis

An always block with procedural statements using coding styles described
in Sec. 4.5 is synthesizable. Because procedural blocks offer more flexibility
in coding than gates or concurrent assignments, certain guidelines must
be followed to make sure an always statement intended to synthesize a
combinational block actually corresponds to such hardware.

4.6.3.1 Input Sensitivity. A combinational circuit continuously moni-
tors its input and an event on any of its inputs causes circuit outputs
to be evaluated. In other words, a combinational circuit is sensitive to
all its inputs. A Verilog always block that is to correspond to a combi-
national block of hardware must have a similar behavior. For this cor-
respondence, such an always block must include all its inputs in its
sensitivity list. We define inputs of an always block as all variables or
signals that are being read. For example if a variable is defined outside
of the always block that is not necessarily an input of the circuit being
synthesized and participates in a relational operation inside the always
block, this variable must be included in the sensitivity list of the always
block. Verilog descriptions of Sec. 4.5 synthesize to combinational cir-
cuits, and in all always blocks used (see for example Fig. 4.63) all inputs
are included in their sensitivity lists.

Verilog makes this synthesis rule easier to follow by allowing an aster-
isk (*) in the sensitivity list of always blocks to imply all inputs. For
example, the headings of the arithmetic and compare always state-
ments of Fig. 4.63 can be replaced with:

always @ (*) begin: arithmetic

and

always @ (*) begin: compare

4.6.3.2 Output assignments. Another property of a combinational cir-
cuit is that its outputs are always affected by a change in its inputs.
Another way of saying this is that outputs of a combinational circuit
never retain their old values, i.e., no latching occurs on the outputs. As
with input sensitivity described above, an always statement that cor-
responds to a combinational block must have provisions for preventing
output latches.

Combinational Circuit Description 129

There are two ways we can make sure outputs of a combinational
always statement are always affected when an event occurs on its
input. One way is for the designer to trace through all conditions of
case, if-else, and other procedural statements of the always block,
and make sure all outputs receive some value, no matter what the input
conditions are. For large designs with many nested procedural state-
ments, this may become a formidable task. If the designer misses an
output, and under certain input conditions an output does not receive
a value, the synthesis tool generates a latch on this output, which is con-
trary to what we expect from outputs of combinational blocks.

Figure 4.67 shows the block diagram of an ALU. As shown in the
Verilog code of Fig. 4.68, the y and co outputs of this ALU are given
values inside an always block. Notice in this block that regardless of
input conditions both outputs receive some values. In this example the
case default helps assigning values to the outputs under conditions
that are not explicitly specified in other case alternatives.

To make this output assignment requirement easier to implement, a
designer can place procedural assignments at the beginning of an
always block to assign all outputs of the always block to their inactive
values. Outputs of an always block are regarded as all those variables

130 Chapter Four

a[3:0]

b[3:0] y[3:0]

co

alu

add_sub

func[1:0]

gt

eq

lt

ov

comparator

arithmetic

Figure 4.67 ALU Block Diagram

that appear somewhere in the block on the left-hand side of a procedural
assignment. Consider, for example, the arithmetic always block of the
example of Fig. 4.63. In this code ov and im_y are set to 0 right at the
beginning of the always block. In the case statement that follows these
assignments, the ov output receives values when add or subtraction
operations (f = 00, or f = 01) are taking place. However, this output is
left unaffected by this case statement if f has any value but 00 and 01.
The assignment of 1'b0 to ov at the beginning of the always statement
guarantees that no latches are put on this output.

The situation with the im_y output of the arithmetic block of this
code is somewhat different. In the case statement, this output receives
some value regardless of input conditions, and therefore no latches are
implied on the bits of this vector. Therefore, the im_y = 0; assignment
at the beginning of this block is not necessary, but does not hurt the syn-
thesis process. The effect of the redundant assignment of 0 to this output
is eliminated in the synthesis optimization process.

Combinational Circuit Description 131

Figure 4.68 ALU Synthesizable Verilog Code

module alu (a, b, add_sub, func, y, co, gt, eq, lt, ov);
input [3:0] a, b;
input add_sub;
input [1:0] func;
output [3:0] y;
reg [3:0] y;
output co, gt, eq, lt, ov;
reg co;

always @(a or b or add_sub or func) : arithmetic
case (func)

2’b00 :
if (add_sub) { co, y } = a - b;
else { co, y } = a + b;

2’b01 : { co, y } = { 1’b0, a };
2’b10 : { co, y } = { 1’b0, a & b };
2’b11 : { co, y } = { 1’b0, ~a };
default: { co, y } = , 5’b00000 ;

endcase

compartor cmp (a, b, gt, eq, lt);

assign ov = (func==2’b00)
? ((a[3] & b[3] & ~y[3]) | (~a[3] & ~b[3] & y[3]))
: 1’b0;

endmodule

4.6.4 Mixed synthesis

Gate level, module instantiations, assign statements and always blocks
can all coexist in a synthesizable description. For example the code of
Fig. 4.68 has an always block that assigns values to co and y outputs
of the ALU. Instantiation of the comparator module of Fig. 4.66 provides
hardware for driving the compare outputs of the ALU. The last state-
ment in the synthesizable code of the alu module is an assign statement
that generates logic for driving the ov output. Note that overflow only
occurs if the ALU is performing an add operation. Therefore assign-
ment to ov is conditioned by func == 2’b00, where 2’b00 is the add opcode.

4.7 Summary

Although the focus of this chapter was primarily on combinational cir-
cuits, most language constructs used for combinational and sequential
circuits were presented. Therefore this chapter can be regarded as our
main chapter presenting the Verilog language in an example oriented
fashion. In addition to constructs that directly correspond to hardware
structures, this chapter also presented constructs for specification of
timing of a hardware unit. Obviously, such constructs cannot be used
in designs for synthesis.

Problems

4.1 Write a Verilog description for the following function.

f (A, B, C, D) = Σm(0, 2, 4, 5, 6, 7, 9, 10, 11), d(1, 13)

4.2 Write Verilog code for a 4-to-1 multiplexer with a tri-state output and an
active low OutputEnable input. The multiplexer has four data inputs (d0, d1,
d2, d3) and two select inputs (s1, s0). Use case and if statements.

4.3 Use two of the multiplexers of Prob. 4.2 to build an 8-to-1 multiplexer.

4.4 Use the 8-to-1 multiplexer of Prob. 4.3 to implement the function of
Problem 4.1.

4.5 Show Verilog code for a cascadable 4-to-2 priority encoder. Your circuit
should have an enable input, four data inputs, an enable output, an interrupt
output, and two source id outputs. All inputs and outputs must be active high.
For cascading purposes and to be able to use wired-OR logic, use tri-state for
your id outputs. Adjust the details of your design for a better cascading capability.

4.6 Write a Verilog description for a 4-bit adder-subtractor that adds when as
is 1 and subtracts when as is 0.

132 Chapter Four

4.7 Write a Verilog function to implement a 4-bit BCD to seven-segment display
(BDC_to_7Seg) converter. Use vector inputs and outputs. Number your output
segments from 0 to 6 in clock-wise direction starting with the top segment and
ending with the middle segment.

4.8 Show gate level details of the circuit described by the following Verilog code.

Combinational Circuit Description 133

module infer (q, d, e, c);
input d, c;
output q;
reg q;

always @(c, d, e)
if (c == 1 && e == 0) q = d; else q = 1;

endmodule

s2 s1 S0 Function

0 0 0 A add B
0 0 1 A sub B
0 1 0 A add 2*B
0 1 1 A sub 2*B
1 0 0 A * B (4-bit)
1 0 1 min (A, B)
1 1 0 Abs (A)
1 1 1 B

4.9 Consider two 4-bit binary numbers A and B. Bits of A are a3, a2, a1, and
a0, and bits of B are b3, b2, b1, and b0. A is greater than B if a3 is 1 and b3 is
0, but if a3 and b3 are the same, then if a2 is 1 and b2 is 0, we can determine
that A is greater than B. This evaluation continues until a0 and b0 are
considered. If a0 and b0 are equal then A and B are equal. Using discrete gates
and Verilog gate primitives build a 4-bit comparator that generates a 1 on its
GT output when its 4-bit input A is greater than its B input, and a 1 on its EQ
output when A and B are equal. Use the generate statement and other Verilog
iterative logic support structures.

4.10 Using the comparator of Prob. 4.9 and discrete logic gates, build a MIN
circuit that takes two 4-bit inputs and puts the smaller of its two inputs on its
output. Write the Verilog description of this circuit.

4.11 Write a Verilog description for a multiplier bit. Using this multiplier bit
write a Verilog code for a 4×4 array multiplier. Then, using the 4×4 multiplier
design an ALU that performs eight functions according to the following table.
The data inputs of the ALU are 8 bits. Use always blocks and case statements
in your Verilog description.

Suggested Reading

Bhasker, J., Verilog HDL Synthesis, A Practical Primer, Star Galaxy Pub, 1998, ISBN:
0965039153.

Brown S., and Z. Vranesic, Fundamentals of Digital Logic with Verilog Design, McGraw-
Hill, New York, 2002, ISBN: 0-07-283878-7.

IEEE Std 1364-2001, IEEE Standard Verilog Language Reference Manual, SH94921-
TBR (print) SS94921-TBR (electronic), ISBN 0-7381-2827-9 (print and electronic),
2001.

Navabi, Z., Digital Design and Implementation with Field Programmable Devices, Kluwer
Academic Publishers, Boston, 2005, ISBN: 1-4020-8011-5.

Navabi, Z., Verilog Computer-Based Training Course, CBT CD with hardcopy User’s
manual, McGraw-Hill, New York, 2002, ISBN 0-07-137473-6.

Palnitkar, S., Verilog HDL, 2d ed, Prentice Hall PTR, New Jersey, 2003, ISBN: 0130449113.
Thomas, P. R., and P. Moorby, The Verilog® Hardware Description Language, Springer,

Boston, 2002, ISBN: 1402070896.

134 Chapter Four

Chapter

5
Sequential Circuit Description

Based on the material of Chap. 3, the previous chapter discussed ways
of modeling timing and functionality of combinational circuits. This
chapter follows a similar flow as that of Chap. 4, but concentrates on
using Verilog constructs for description of sequential circuits. For the
sake of completeness we discuss use of gate level and assignments for
describing memory elements; however, most of our attention will be
given to modeling such parts with procedural statements. Because most
of Verilog language constructs have already been discussed in conjunc-
tion with the combinational circuits, this chapter focuses less on language
aspects and more on hardware modeling. Furthermore, timing-related
issues of the language, as discussed in Chap. 4, apply as well to sequen-
tial circuits and will not be discussed here.

The next section in this chapter discusses hardware properties that
make a logic circuit store data. Section 5.2 shows ways of describing
basic memory components. Based on models discussed, Sec. 5.3 shows
Verilog description of functions with storage capability such as counters
and shift registers. This will be followed by state machine and con-
troller modeling, and finally as in Chap. 4, we will have a discussion of
modeling for synthesis.

5.1 Sequential Models

In digital circuits, storage of data is done either by feedback, or by gate
capacitances that are refreshed frequently. Verilog provides language
constructs for building memory elements using both these schemes.
However, more abstract models also exist and are used in most sequen-
tial circuit models.

135

Copyright © 2006 by The McGraw-Hill Publishing Companies, Inc. Click here for terms of use.

5.1.1 Feedback model

The construct shown in Fig. 5.1 is the most basic feedback circuit that
has data storage capability.

This circuit has one feedback line that makes it a two-state (feedback =
0 and feedback = 1), or a 1-bit, memory element. Many Verilog con-
structs can be used for proper modeling of this circuit.

5.1.2 Capacitive model

Another hardware structure with storage capability is shown in Fig. 5.2.
When C becomes 1 the value of D is saved in the input gate of the
inverter and when C becomes 0, this value will be saved until the next
time that c becomes 1 again. The output of the inverter is equal to the
complement of the stored data.

Because of powerful switch level capabilities of Verilog, the circuit of
Fig. 5.2 can be very closely modeled in Verilog. Chapter 7 of this book
discusses switch level modeling for combinational and sequential circuits
in great detail.

5.1.3 Implicit model

Feedback and capacitive models discussed above are technology depend-
ent, and they have the problem of being too detailed and thus too slow
to simulate. Of course, where such details are needed, this level of mod-
eling is possible in Verilog.

Verilog also offers language constructs that model storage elements at
more abstract levels than the previous models. Such modelings are tech-
nology independent and allow much more efficient simulation of circuits

136 Chapter Five

S

R

Q

Figure 5.1 Basic Feedback

Figure 5.2 Capacitive Storage

D

C

Q

with a large number of storage elements. Figure 5.3 shows an SR-latch
model without gate level details.

Because gate and transistor details of models at the block diagram level
are not known, Verilog provides timing check constructs for ensuring cor-
rect operation of this level of modeling. The sections that follow present lan-
guage constructs for feedback modeling of storage elements, but concentrate
on the more abstract models in which storage is implied by the Verilog code.

5.2 Basic Memory Components

This section shows modeling memory components in Verilog. We start
with latches and discuss 1-bit and multidimensional memories. In the
use of Verilog constructs, we show how gates, primitives, assignments,
and procedural blocks are used for memory modeling.

5.2.1 Gate level primitives

Figure 5.4 shows a cross-coupled NOR structure that forms a 1-bit
storage element. This circuit is no different than that of Fig. 5.1, and
its storage is due to the feedback from q back to g1.

Sequential Circuit Description 137

1S

1R

Q

C1 Figure 5.3 An SR-Latch Notation

s

r
q

g1

g2

q_b

latch

Figure 5.4 Cross-Coupled NOR Latch

The Verilog code of this diagram is shown in Fig. 5.5. The q and q_b out-
puts are driven by two NOR gates, and are therefore initially X. The out-
puts remain at this ambiguous state for as long as s and r remain 0. After
a delay of 4 ns after s becomes 1, q becomes 1 and after another 4 ns delay,
q_b becomes 0. Simultaneous assertion of both inputs results in loss of
memory.

This memory element is the base of most static memory components.
Adding control gates and a clock input results in a clocked SR-latch.
Figure 5.6 shows an all-NAND version of a clocked SR-latch.

The Verilog code that corresponds to the diagram of Fig. 5.6 is shown
in Fig. 5.7. As shown, the circuit is parameterized so that delay values
can be controlled when the latch is instantiated. We have declared our
parameters in the module header along with module name and ports.
Wire names _s and _r are used for the set and reset inputs to the cross-
coupled core of this memory element.

138 Chapter Five

`timescale 1ns/100ps

module latch (input s, r, output q, q_b);
nor #(4)

g1 (q_b, s, q),
g2 (q, r, q_b);

endmodule

Figure 5.5 SR-Latch Verilog Code

_s

_r
q_b

g1

g2

q

latch_p

s

c

r
g4

g3

Figure 5.6 All NAND Clocked SR-Latch

The simulation of Fig. 5.7 is shown in Fig. 5.8. Initially both q and q_b
are X, and 8 ns after the c clock becomes 1 while s is 1 the q output is
set to 1. This delay is due to a fall of 3 ns and a rise of 5 ns in the NAND
gates of the circuit. While c is 1 when r becomes 1 at time 50 ns, the q
output becomes 0 after 13 ns. This output becomes 1 after 8 ns of s
becoming 1 at time 90 ns.

Using the latch of Fig. 5.6, Fig. 5.9 shows the formation of a master-
slave D flip-flop.

The Verilog code of Fig. 5.10 corresponds to the diagram of Fig. 5.9.
In this code, hierarchical naming is used for overriding parameters of
the master and slave instantiations of latch_p module.

5.2.2 User defined sequential primitives

For faster simulation of memory elements and for correspondence with
specific component libraries, Verilog provides language constructs for
defining sequential user-defined primitives (UDPs). Asequential UDP has
the format of the combinational UDP of Chap. 4, except that in addition
to the inputs, and output of the circuit, its present state is also specified.

Sequential Circuit Description 139

`timescale 1ns/100ps

module latch_p #(parameter tplh=3, tphl=5) (input s, r, c,
output q, q_b);

wire _s, _r;
nand #(tplh,tphl)

g1 (_s, s, c),
g2 (_r, r, c),
g3 (q, _s, q_b),
g4 (q_b, _r, q);

endmodule

Figure 5.7 All NAND Clocked Latch

Figure 5.8 SR Latch Simulation

Figure 5.11 shows a sequential UDP defining an SR-clocked latch. The
behavior described here is the same as that of circuit of Fig. 5.4 or the
Verilog code of Fig. 5.5. As shown, the table defining the latch output
has a column for specifying its present state. This column comes before
the output specification column and is separated from inputs and output
by colons. Question marks (?) in the table signify “any value” and dashes
(-) are for “no change.” For example the first row of the table of primi-
tive latch reads as: any value on s, r and the present sate (q), for as long
as c is 0, keeps the next state of the machine (q+) unchanged.

When instantiated, rise and fall delay values can be specified for a
sequential UDP in the same way as specifying delays for other lan-
guage primitives.

5.2.3 Memory elements using assignments

As discussed in Chap. 3, a continuous assignment is equivalent to a gate
structure driving the left-hand side of the assignment. We can use these

140 Chapter Five

latch

d

c
~c

qm

qm_b~d

master_slave

q

q_b

latch

Figure 5.9 Master-Slave D Flip-Flop

`timescale 1ns/100ps

module master_slave (input d, c, output q, q_b);
wire qm, qm_b;
defparam master.tplh=4, master.tphl=4, slave.tplh=4,

slave.tphl=4;
latch_p

master (d, ~d, c, qm, qm_b),
slave (qm, qm_b, ~c, q, q_b);

endmodule

Figure 5.10 Master-Slave D Flip-Flop Verilog Code

statements for specifying specific gates of a hardware module for a latch,
or for specifying a feedback circuit.

Figure 5.12 shows two feedback blocks forming a master-slave flip-
flop. Each block has three inputs and one output. When a block’s clock
input is 0, it puts its output back to itself (feedback), and when its clock
is 1 it puts its data input into its output.

Figure 5.13 shows a master-slave flip-flop that uses assign state-
ments to implement feedbacks shown in Fig. 5.12. In the first assign-
ment the use of qm on the right and left of the assign statement
corresponds to the feedback of this output back to its input. Each assign

Sequential Circuit Description 141

primitive latch(q, s, r, c);
output q;
reg q;
input s, r, c;
initial q=1’b0;
table

// s r c q q+;
// ——————:———:———;

? ? 0 : ? : - ;
0 0 1 : ? : - ;
0 1 1 : ? : 0 ;
1 0 1 : ? : 1 ;

endtable
endmodule

Figure 5.11 Sequential UDP Defining a Latch

d

c

qm

master_slave

q

~c

Figure 5.12 Master-Slave Using Two Feedback Blocks

statement implements a latch, and the module that uses two latches
with complementary clocks implements a master-slave flip-flop.

5.2.4 Behavioral memory elements

The previous sections showed Verilog models for latches and flip-flops
by explicit use of feedback or present and next states. Such a model cor-
responds to the actual hardware implementing a memory element, and
has the potential of having all gate level delays specified.

A more abstract and easier way of writing Verilog code for a latch or
flip-flop is by behavioral coding. This way, the storage of data and its
sensitivity to its clock and other control inputs will be implied in the way
model is written.

5.2.4.1 Latch modeling. As our first behavioral model of a memory ele-
ment consider the Verilog code of the D latch of Fig. 5.14. This code reads
as: when c or d changes, if c is 1, q gets d. This means that if c or d
changes and c is not 1, then q does not change and it retains its old value.

142 Chapter Five

`timescale 1ns/100ps

module master_slave_p #(parameter delay=3) (input d,c, output q);
wire qm;
assign #(delay) qm = c ? d : qm;
assign #(delay) q = ~c ? qm : q;

endmodule

Figure 5.13 Assign Statements Implementing Logic Feedback

`timescale 1ns/100ps

module latch (input d, c, output reg q, q_b);
always @(c or d)

if (c) begin
#4 q = d;
#3 q_b = ~d;

end
endmodule

Figure 5.14 A D-Type Latch Verilog Code

It can also be read from the Verilog code that while c is 1, changes on d
directly affect q and q_b outputs. This behavior implies a storage unit
that is level sensitive to c and is thus a latch.

In the body of the always block used in this latch, timing control
statements are used for delaying assignments to q and q_b. When the
flow begins in this procedural statement, if c is 1, then after 4 ns the d
input is read and assigned to q. After another wait of 3 ns, d is read again
and its complement (~d) is assigned to q_b. If d changes between the
time it is read for q and q_b (in the 3 ns time), erroneous results happen.
To avoid this problem, nonblocking assignments, with intra-statement
delay controls should be used. Figure 5.15 shows another version of the
D latch that corrects this timing problem. Figure 5.16 shows the timing
behavior of this model for storing a 1 at time 30, and a 0 at time 50 into
our latch.

Because of timing problems such as those described above, use of
nonblocking assignments for describing sequential circuits is recom-
mended. However, it is important to understand the semantics of the
language constructs and their timing implications. With this under-
standing and detailed analysis of the behavior of a model, decisions as
to the use of proper constructs should be made.

Sequential Circuit Description 143

`timescale 1ns/100ps

module latch (input d, c, output reg q, q_b);
always @(c or d)

if (c) begin
q <= #4 d;
q_b <= #3 ~d;

end
endmodule

Figure 5.15 Latch Model Using Nonblocking Assignments

Figure 5.16 Testing Latch with Nonblocking Assignments

5.2.4.2 Flip-flop modeling. A basic edge trigger flip-flop model at the
behavioral level is shown in Fig. 5.17. This model is sensitive to the pos-
itive edge of the clock, and uses nonblocking assignments for assign-
ments to q and q_b.

Flow into the procedural block of Fig. 5.17 is controlled by the event
control statement that has posedge clk as its event expression.
Assignments to q and q_b are reached immediately after the flow in the
always block begins. As shown, the actual assignment of values to q and
q_b are delayed by 4 and 3 ns, respectively. With each clock edge, the
entire procedural block is executed once from begin to end.

Figure 5.18 shows a partial waveform of a simulation run of our D flip-
flop. At 60 ns when we have the positive edge of the clock, the value of
d is read and scheduled into q and q_b for times 64 and 63 ns, respec-
tively. The sensitivity to the positive edge of the clock in this example
is illustrated by the fact that during the time that clk is 1 (from 60 to
80 ns, exclusive of 60 ns, and inclusive of 80 ns), changes on d do not
affect the state of the flip-flop.

5.2.4.3 Flip-flop with set-reset control. The style presented in d_ff of
Fig. 5.17 can be expanded to cover flip-flops with synchronous and asyn-
chronous set and reset control inputs. The Verilog code of Fig. 5.19 is a
D-type flip-flop with synchronous set and reset (s and r) inputs.

144 Chapter Five

`timescale 1ns/100ps

module d_ff (input d, clk, output reg q, q_b);
always @(posedge clk) begin

q <= #4 d;
q_b <= #3 ~d;

end
endmodule

Figure 5.17 Positive Edge Trigger Flip-Flop

Figure 5.18 Simulation of a Positive Edge Flip-Flop

As shown in this figure, a single always statement is used for describ-
ing the d_ff_sr_Synch module. The flow into the always block is only
initiated by the posedge of clk. Therefore, the if-statements with s and
r conditions are only examined after the positive edge of the clock. This
behavior is in accordance with synchronicity of s and r control inputs.

The Verilog code of Fig. 5.20 is a D-type flip-flop with asynchronous
set and reset inputs. Unlike the code of Fig. 5.19, the sensitivity list of
the always block in the d_ff_sr_Asynch module includes posedge s and
posedge r as well as posedge clk. Inclusion of posedge s and posedge
r enables flow into the always block when clock changes to 1 or when
s or r become active. The arrangement of if conditions and this sensi-
tivity makes this model a positive edge trigger with asynchronous set
and reset control inputs.

Although posedge is used for clk, s, and r, the d_ff_sr_Asynch is sen-
sitive to the edge of the clock, but to the levels of s and r. This is because
the if statements examine s and r and the default else is used for clk;
being last in the condition of the if statements makes assignment of d
to q sensitive to the clock edge. Examining this description with vari-
ous values of s, r, and clk proves correctness of this model.

Figure 5.21 shows output waveforms of d_ff_sr_Synch and
d_ff_sr_Asynch for data applied to d, s, and r. In the first half of this
waveform (before 120 ns), changes to q are triggered by the clock and
q_Synch and q_Asynch are exactly the same. In the second half of this

Sequential Circuit Description 145

`timescale 1ns/100ps

module d_ff_sr_Synch (input d, s, r, clk, output reg q, q_b);

always @(posedge clk) begin
if(s) begin

q <= #4 1’b1;
q_b <= #3 1’b0;

end else if(r) begin
q <= #4 1’b0;
q_b <= #3 1’b1;

end else begin
q <= #4 d;
q_b <= #3 ~d;

end
end

endmodule

Figure 5.19 D Type Flip-Flop with Synchronous Control

waveform, s and r become active and cause changes to the flip-flop
output. Note that q_Synch still waits for the edge of the clock to set or
reset, while q_Asynch changes occur independent of clk when s or r
becomes active.

5.2.4.4 Other storage element modeling styles. Models presented above
are the most commonly used models for latches and flip-flops. Verilog
provides other language constructs that can be used for this purpose,
and for the sake of completeness and presentation of such constructs,
we discuss storage elements utilizing them.

Figure 5.22 shows a latch using a wait statement instead of an
event control statement. The code shown models a positive level sensitive

146 Chapter Five

`timescale 1ns/100ps

module d_ff_sr_Asynch (input d, s, r, clk, output reg q, q_b);

always @(posedge clk, posedge s, posedge r) begin
if(s) begin

q <= #4 1’b1;
q_b <= #3 1’b0;

end else if(r) begin
q <= #4 1’b0;
q_b <= #3 1’b1;

end else begin
q <= #4 d;
q_b <= #3 ~d;

end
end

endmodule

Figure 5.20 D-type Flip-Flop with Asynchronous Control

Figure 5.21 Comparing Synchronous and Asynchronous Flip-Flop Controls

D-type latch. The wait statement shown is a procedural statement that
blocks the flow of the procedural block when c is 0. When c becomes 1,
the wait statement allows the program flow to pass it and reach assign-
ments to q and q_b. Because an always statement repeats itself forever,
if c becomes 1 and remains at this value, the body of the always state-
ment repeats itself every 7 ns due to the delay control statements. If
these delays are omitted, then the looping of the body of the always
statement happens in zero time causing an infinite loop in simulation.

Figure 5.23 shows a D-type flip-flop using a fork-join construct. A
fork-join bracketing instead of begin-end causes all sequential state-
ments or blocks of sequential statements that are immediately within
this bracketing to be executed in parallel. In the Verilog code of d_ff
shown in Fig. 5.23, delay control statements and their following assign-
ments are executed in parallel. Therefore assignment to q is delayed by
4 ns and to q_b by 3 ns. Unlike begin-end bracketing, accumulation of
delays does not occur.

Sequential Circuit Description 147

`timescale 1ns/100ps

module latch (input d, c, output reg q, q_b);

always begin
wait (c);

#4 q <= d;
#3 q_b <= ~d;

end
endmodule

Figure 5.22 Latch Using wait, a Potentially Dangerous Model

`timescale 1ns/100ps

module d_ff (input d, clk, output reg q, q_b);

always @(posedge clk)
fork

#4 q <= d;
#3 q_b <= ~d;

join

endmodule

Figure 5.23 Flip-Flop using fork-join, no Delay Accumulation

Another mechanism for modeling storage elements is by the use of
sequential assign and deassign statements. The D-type flip-flop of
Fig. 5.24 with asynchronous s and r control inputs uses sequential assign
statements to force set (1) and reset (0) values onto the flip-flop q output.

A sequential assign statement forces a value into a reg type variable,
and a sequential deassign removes it. A value forced into a variable by
assign can only be removed by deassign. A sequential assign statement
implies de-assigning any previously assigned values. While a sequential
assign is in effect, all non-assign statements will be ineffective.

Our example of Fig. 5.24 uses the force_a_1 block to force a 1 into q
when s is 1, and uses force_a_0 block to force a 0 into q when r is 1. The
third block (i.e., clocked) cannot affect q or q_b when any of the forcing

148 Chapter Five

`timescale 1ns/100ps

module d_ff (input d, clk, s, r, output reg q, q_b);
always @(s) begin : force_a_1

if (s)
begin

#6 assign q = 1’b1;
#4 assign q_b = 1’b0;

end else begin
deassign q;
deassign q_b;

end
end

always @(r) begin : force_a_0
if(r)

begin
#6 assign q = 1’b0;
#4 assign q_b = 1’b1;

end else begin
deassign q;
deassign q_b;

end
end

always @(posedge clk) begin : clocked
#4 q = d;
#3 q_b = ~d;

end

endmodule

Figure 5.24 D-type Flip-Flop Sequential assign and deassign

blocks are in effect. The deassign statements of any of the forcing blocks
are able to release the flip-flop outputs, allowing the clocked block to clock
d into the flip-flop with the positive edge of the clock.

5.2.5 Flip-Flop timing

As discussed above, behavioral modeling of flip-flops only allows a lim-
ited timing specification. Furthermore, the body of a procedural state-
ment, where a flip-flop behavior is described, is not an appropriate place
for checking for inappropriate timings of flip-flop inputs and clock. This
section discusses Verilog language constructs for detecting and report-
ing timing violations. Such constructs include system tasks for check-
ing setup, hold, period, and width parameters.

5.2.5.1 Setup time. Setup time is defined as the minimum necessary
time that a data input requires to setup before it is clocked into a flip-
flop. Verilog construct for checking the setup time is $setup, which
takes the flip-flop data input, active clock edge and the setup time as
its parameters. The $setup task is used within a specify block.

Figure 5.25 shows a D-type flip-flop with a positive edge trigger flip-
flop and asynchronous set and reset controls. In the d_ff module shown,

Sequential Circuit Description 149

`timescale 1ns/100ps

module d_ff (input d, clk, s, r, output reg q, q_b);

specify
$setup (d, posedge clk, 5);

endspecify

always @(posedge clk or posedge s or posedge r) begin
if(s) begin

q <= #4 1’b1;
q_b <= #3 1’b0;

end else if(r) begin
q <= #4 1’b0;
q_b <= #3 1’b1;

end else begin
q <= #4 d;
q_b <= #3 ~d;

end
end

endmodule

Figure 5.25 Flip-Flop with Setup Time

the $setup task that is used within the specify block continuously
checks the timing distance between changes on d and the positive edge
of the clk clock. If this distance is less than 5 ns, a violation message will
be issued.

Figure 5.26 shows the simulation of the flip-flop of Fig. 5.25. The d
input changes at 57 ns, and before this change is allowed the setup
time of 5 ns, the data is clocked into the flip-flop at 60 ns, only 3 ns after
d. The simulation run reports the violation as shown in Fig. 5.26.

5.2.5.2 Hold time. Hold time is defined as the minimum necessary time
a flip-flop data input must stay stable (hold its value) after it is clocked.
The Verilog construct for checking the hold time is $hold, which takes
the flip-flop active edge of the clock, its data input, and the required hold
time as its parameters. The $hold task must be used inside a specify
block.

Figure 5.27 shows a flip-flop with hold time check and Fig. 5.28 shows
the input signals that cause the hold time violation of 3 ns. As shown,
clk samples the d value of 1 at 20 ns. However, at 22 ns, d changes. This
violates the minimum required hold time of 3 ns, and the message
shown in Fig. 5.28 is displayed.

The Verilog $setuphold task combines setup and hold timing checks.
The following replaces both tasks used in Figs. 5.25 and 5.27.

$setuphold (posedge clk, d, 5, 3);

5.2.5.3 Width and period. Verilog $width and $period check for min-
imum pulse width and period. Pulse width checks the time from a spec-
ified edge of a reference signal to its opposite edge. Period checks the time
from a specified edge of a reference signal to the same edge. Figure 5.29
shows a D-type flip-flop with $setuphold, $width, and $period.

This flip-flop behaves the same as those of Figs. 5.25 and 5.27. The
always block shown and assignment to q_b are done differently, just to
demonstrate other coding styles possible for flip-flops. Simulation waveform
demonstrating width, setup, and period violations is shown in Fig. 5.30.

150 Chapter Five

Figure 5.26 Setup Time Violation

5.2.6 Memory vectors and arrays

Coding styles and timings discussed in the previous sections apply
to arrays and vectors as well. The only difference is that when one-
dimensional vectors or multi-dimensional arrays are being considered,
their input output ports and their memory structures should be declared
accordingly.

5.2.6.1 Vectors. Figure 5.31 shows an 8-bit transparent D-latch. Data
input and latch output are declared as 8-bit vercors. The always block
shown is sensitive to c and all eight bits of d.

Sequential Circuit Description 151

`timescale 1ns/100ps

module d_ff (input d, clk, s, r, output reg q, q_b);

specify
$hold (posedge clk, d, 3);

endspecify
always @(posedge clk or posedge s or posedge r) begin

if(s) begin
q <= #4 1’b1;
q_b <= #3 1’b0;

end else if(r) begin
q <= #4 1’b0;
q_b <= #3 1’b1;

end else begin
q <= #4 d;
q_b <= #3 ~d;

end
end

endmodule

Figure 5.27 Flip-Flop with Hold Time

Figure 5.28 Hold Time Violation

152 Chapter Five

`timescale 1ns/100ps

module d_ff (input d, clk, s, r, output reg q, output q_b);

specify
$setuphold (posedge clk, d, 5, 3);
$width (posedge r, 4);
$width (posedge s, 4);
$period (negedge clk, 43);

endspecify

always @(posedge clk or posedge s or posedge r)
if(s) q <= #4 1’b1;
else if(r) q <= #4 1’b0;
else q <= #4 d;

assign #2 q_b = ~q;

endmodule

Figure 5.29 Setup, Hold, Width, and Period Checks

Figure 5.30 Setup, Width, and Period Violation

`timescale 1ns/100ps

module vector_latch (input [7:0] d, input c, output reg [7:0] q);
always @(c or d)

if(c)
#4 q = d;

endmodule

Figure 5.31 8-bit Transparent D-Latch

Figure 5.32 shows an 8-bit register with a synchronous rst input, and a
tri-state output controlled by oe. The structure of the always block is the
same as those of the flip-flops of the previous section. This block assigns
eight 0s (i.e., 8’b0000_0000) or the input d to the internal_q. A separate
assign statement puts internal_q or eight Zs on the q output of the reg-
ister. While oe is 0, the q output will always be at the high-impedance state.

Another example of a register is shown in Fig. 5.33. This Verilog code
corresponds to a sizable register whose size can be specified when instan-
tiated. This register acts as an asynchronous active low reset input.

5.2.6.2 Arrays. Figure 5.34 shows the block diagram of an unclocked
memory with an address space of 8 and word length of 4. This memory
has a rd read and a wr write inputs.

Figure 5.35 shows a sizable Verilog code that corresponds to this block
diagram. Parameters used in this code are M and N for the length of the
address and data, respectively. When written into, mem holds the data,
and when being read, the addressed location drives data. When rd is not
active, data is float.

5.2.6.3 Memory initialization. Verilog has the $readmemh and $read-
memb tasks for reading external data files and using them for initial-
ization of memory blocks. The code of Figure 5.35, that describes a
memory with bidirectional data lines, also shows memory initialization
from an external file. Data from mem.dat external data file is read and
the memory is initialized with this data.

As shown in this example, an initial statement (last statement in
Fig 5.35) invokes $readmemh at time 0. At this time, data words from

Sequential Circuit Description 153

`timescale 1ns/100ps

module vector_ff (input [7:0] d, input clk, rst, oe,
output [7:0] q);

reg [7:0] internal_q;

always @(posedge clk)
if(rst)

#4 internal_q <= 8’b0000_0000;
else

#4 internal_q <= d;

assign q = oe ? internal_q : 8’bZ;
endmodule

Figure 5.32 An 8-bit Register with Tri-State Output

mem.dat are read and are sequentially placed in the words of mem.
Each line in mem.dat corresponds to a word of mem (starting from loca-
tion 0), and data words are expected to be in hexadecimal. Optionally,
invocation of $readmemh task may contain a range of the memory
words to fill. The $readmemb task is similar to $readmemh, except
that each line of the file read is expected to contain binary data equiv-
alent to the word length of the memory.

5.2.6.4 Bidirectional memory. Another feature of the memory of Fig. 5.35
is its bidirectionality. As shown, data is declared as inout. An inout bus
is only considered as a net, and cannot be declared as a reg. Therefore,
if such a port is to receive values in a procedural block, a temporary reg
must be declared to contain data that is being put on the bidirectional
bus. In our example, we have declared reg temp to hold data being read

154 Chapter Five

`timescale 1ns/100ps
module sizable_reg #(size) (input [size-1:0] d, input clk, rst,

output reg [size-1:0] q);
always @(posedge clk, negedge rst)

begin
if(~rst)

#4 q <= 0;
else

#4 q <= d;
end

endmodule

Figure 5.33 A Sizable Register

Figure 5.34 Memory Block Diagram

data

adr[2:0]

mem8_by4

d_out[3:0]

wr

rd

from the memory and that is going out on the data bidirectional output.
An assign statement puts temp on data if rd is 1. Writing into this
memory is more direct, and it is done by reading data directly from the
bidirectional data lines of the memory.

In general, certain rules apply for declaring and using bidirectional
(inout) lines. An inout port cannot be declared as a reg. For reading
from an inout line, its name, as appears in its declaration, should be used
in right-hand side expressions and/or conditional expressions. For assign-
ing values to an inout line in a procedural block, a temporary reg of the
same size must first be declared. Then by using an assign statement,
the temporary reg must be conditionally assigned to the inout line. The
condition should include all the read conditions, and if false, the assign
statement should drive the inout line with all Zs. Procedural blocks
wanting to output something through the inout line, must make assign-
ments to the declared temporary reg. Figure 5.36 outlines these steps.

If a design does not require writing into an inout from a procedural
block, the use of temporary reg is not necessary, but writing into the
inout line must still be conditioned with all read conditions.

5.2.6.5 PLA modeling. Although programmable logic arrays (PLAs) can
be described with combinational expressions, Verilog has PLA modeling

Sequential Circuit Description 155

`timescale 1ns/100ps

module Memory_2Power_M_by_N #(parameter M=3, N=4)
(input [M-1:0] adr, input rd, wr, inout [N-1:0] data);

reg [N-1:0] mem [0:2**M-1];
reg [N-1:0] temp;
assign data = rd ? temp : ‘bZ;
always @(data, adr, rd, wr)

begin
if(wr)

#4 mem[adr] = data;
else if(rd)

#4 temp = mem[adr];
else

#4 temp = ‘bZ;
end

initial $readmemh(“mem.dat”, mem);

endmodule

Figure 5.35 Memory with inout and External File Initialization

tasks that have a better correspondence with actual PLAs than using
combinational modeling styles for describing them. Verilog PLA model-
ing tasks use a personality memory whose contents determine PLA
fusing. The name of a PLA modeling task determines its array logic type.

Figure 5.37 shows a Verilog code that uses the contents of mem to
define a PLA. The $readmemb task reads PLA personality data from
pla.dat external file and loads it into mem. In this example, PLA con-
figuration is determined by concatenation of system tasks $asynch,
$nand, and $array.

156 Chapter Five

1. Declaring a bidirectional bus:
inout [Size-1 : 0] mybus;

2. Reading the bidirectional bus:
Some_LHS_Assigned = mybus;

3. Writing into the bidirectional bus by a procedural block:
a. Declare a temporary reg as shown:

reg [Size-1 : 0] mytemp;
b. Put the temporary reg into the bidirectional bus:

assign mybus = (read_condition) ? mytemp :’bZ;
c. Write into the temporary reg representation of the bus:

always . . . begin
mytemp = What_is_being_outputted;

end

Figure 5.36 Reading and Writing Bidirectional Lines

`timescale 1ns/100ps

module pla (in, out);
input [7:0]in;
output [3:0]out;
reg [3:0]out;
reg [1:8] mem[1:4];
initial begin

$readmemb (“pla.dat”, mem);
// Contents of pla.dat external file:
//11000000
//10110100
//00001100
//00000111
$async$nand$array (mem,

{in[7],in[6],in[5],in[4],in[3],in[2],in[1],in[0]},
{out[3],out[2],out[1],out[0]});

end
endmodule

Figure 5.37 PLA Verilog Example

A PLA task uses a task name that is a concatenation of the PLA type,
its logic and its format. The arguments of a PLA task are the personal-
ization memory, the input terms, and the output terms. Input and output
terms must be concatenation of scalars, concatenated to form the size,
the memory word-size, and the number of words respectively. The output
terms must be declared as reg.

The type of a PLA can be synchronous or asynchronous ($synch or
$asynch). The PLA logic is determined by its logic specification that can
be $and, $or, $nand, or $nor. For a PLA with the $nand logic and
$array format, each of its outputs is bit-by-bit NAND result of those
input bits that have a corresponding 1 in the PLA personality data. With
pla.dat contents as shown in comments of the Verilog code of Fig. 5.37,
this PLA generates the following expressions on its outputs.

out3 = nand(in7, in6);
out2 = nand(in7, in5, in4, in2);
out1 = nand(in3, in2);
out0 = nand(in2, in1, in0);

5.3 Functional Registers

A register is defined as a group of flip-flops with a common clock. The
term register also applies to a group of latches, but to differentiate them
we will be very precise in using the correct terminology. We will refer
to a group of latches by its size, e.g., octal latch, or nibble latch. We define
a functional register as a group of flip-flops with a common clock and
with some functionality, such as counting and shifting. Styles used for
Verilog coding of functional registers are similar to those of flip-flops and
registers described in the previous section. The difference is the added
arithmetic or logical functionality to the code of functional registers.

5.3.1 Shift registers

Coding shift registers in Verilog is very similar to registers of the previ-
ous section. The addition of shift operations to these styles will be discussed
here. Several shift register examples in this section take advantage of
shift operators and concatenation.

5.3.1.1 Basic shifter. Shown in Fig. 5.38 is a 4-bit shift register with
load, reset, and shift capabilities. The l_r input controls left or right shift-
ing. In either case, the vacated bit will be filled with the contents of s_in
serial input.

Verilog code of Fig. 5.39 corresponds to this shift register. As shown,
all shift register operations are synchronized with the positive edge of
the circuit clock. The active high rst input causes 4'b0000 to be loaded
into the q output. The ld input performs parallel loading of d into q. If

Sequential Circuit Description 157

neither rst nor ld are active, l_r determines left or right shifting. Left
shifting is performed by concatenating s_in to the right of q[2:0] form-
ing a 4-bit vector that is clocked into q[3:0]. Similarly, for right shifting,
a 4-bit vector is formed by concatenating s_in to the left of q[3:1]. In this
case s_in goes into q[3], and q[3], q[2], and q[1] go into q[2], q[1], and q[0],
respectively, causing the right shifting of q. All operations of this circuit
are done in an always block that is sensitive to the positive edge of the
circuit clock. A nesting of if-else statements handles assignments to the
q output. The last else covers all conditions not mentioned in the previ-
ous if statements. This technique guarantees that all conditions are
taken care of by the if statement, and leaves no room for ambiguities.

5.3.1.2 Universal shift register. Figure 5.40 shows the Verilog code of a
universal shift register with bidirectional io. The circuit has s1, s0 inputs
forming a 2-bit number ranging from 3 to 0. The shifter does nothing,
shifts right, shifts left, or performs a parallel load depending on the
value of {s1, s0}. The synchronous rst input resets the shifter.

Because this circuit has a bidirectional inout port, we have declared
q_int to hold the shift register output at all times. Inside an always
block that is sensitive to the positive edge of the clock, assignments to
q_int take place. If rst is 1, this variable is set to 0. Otherwise, a case

158 Chapter Five

d[3:0]

clk

shift_reg

q[3:0]
ld

rst

l_r

s_in

Figure 5.38 A Basic Shift Register

Sequential Circuit Description 159

`timescale 1ns/100ps

module shift_reg (input [3:0] d, input clk, ld, rst, l_r, s_in,
output reg [3:0] q);

always @(posedge clk) begin
if(rst)

#5 q <= 4’b0000;
else if(ld)

#5 q <= d;
else if(l_r)

#5 q <= {q[2:0], s_in};
else

#5 q <= {s_in, q[3:1]};
end

endmodule

Figure 5.39 Basic Shifter Verilog Code

`timescale 1ns/100ps

module shift_reg (input clk, rst, r_in, l_in, en, s1, s0,
inout [7:0] io);

reg [7:0] q_int;
assign io = (en) ? q_int : 8’bz;
always @(posedge clk) begin

if(rst)
#5 q_int = 8’b0;

else
case ({s1,s0})

2’b01 : // Shift right
q_int <= { r_in, q_int[7:1] };
2’b10 : // Shift left
q_int <= { q_int[6:0], l_in };
2’b11 : // Parallel load
q_int = io;
default : // Do nothing
q_int <= q_int;

endcase
end

endmodule

Figure 5.40 Universal Shift Register

statement uses {s1, s0} to decide value assigned to q_int. The case
statement uses the default alternative to cover {s1, s0} of 2’b00 and
all possible ambiguous values. This default alternative is like the
else of the previous example, which guarantees that all conditions are
accounted for.

The io net is the bidirectional port of this shift register. When {s1, s0}
is 2’b11 (parallel loading the shift-register), io is read and put into q_int.
For outputting through io, an assign statement assigns q_int or eight
Zs to this bidirectional bus. If en is 1 q_int is put on i0, and if it is 0, 8’bZ
drives io. An external device wanting to drive io from outside of this
module can only do so when en is 0.

5.3.1.3 Separate register and combinational blocks. A style of coding that
is often used for describing sequential circuits with complex function-
alities is to use separate combinational and sequential blocks. We use
this style of coding for a shift register circuit that can shift its contents
a specified number of positions to the right or to the left. The block dia-
gram of the shift register is shown in Fig. 5.41.

The shifter shown shifts right or left when sr or sl is active. The
number of shifts is determined by s_cnt. The shifter uses 0s for filler for
vacated shift positions. The ld input loads d_in into the shift register.
The rst input directly affects the register block and provides a syn-
chronous reset.

160 Chapter Five

d_in[3:0]

s_cnt

shift_reg

sr

sl

ld

combinational

clk

int_q[3:0]
q[3:0]

rst

register

Figure 5.41 Multi-bit Shifter with Separate Register Block

Figure 5.42 shows the Verilog code of the shifter of Fig. 5.41. The
combinational always block is sensitive to all inputs that affect the
int_q output of this block. This includes q that is the output of our shift
register and the output of the register block that is fed back into the com-
binational block. A nesting of if-else statements sets the int_q output
of the combinational always block to d_in, to q shifted right s_cnt posi-
tions, to q shifted left s_cnt positions, or to q. As before, the last else
guarantees that the output of the combinational block receives a value
no matter what input combinations occur.

The register block of Fig. 5.42 takes int_q, which is the output of the
combinational block, as input and clocks it into the shift register output.
This block is also responsible for resetting the shift register. In this
example, synchronous resetting is used. If asynchronous resetting were
to be used, posedge rst would have to be included in the sensitivity list
of the always block of the register block.

5.3.2 Counters

Coding styles for describing counters is like those for shift registers,
except that arithmetic add (+) and subtract (--) operations must be used
for count-up and count-down. We dedicate this section to describing
counters as well as presenting coding techniques that are general and
can be applied to other sequential circuits as well.

Sequential Circuit Description 161

`timescale 1ns/100ps

module shift_reg(input [3:0] d_in, input clk, sr, sl, ld, rst,
input [1:0] s_cnt, output reg [3:0] q);

reg [3:0] int_q;
always @(d_in, q, s_cnt, sr, sl, ld) begin: combinational

if(ld)
int_q = d_in;

else if(sr)
int_q = q >> s_cnt;

else if(sl)
int_q = q << s_cnt;

else int_q = q;
end
always @(posedge clk) begin: register

if (rst) q <= 0;
else q <= int_q;

end
endmodule

Figure 5.42 Shifter Verilog Code

5.3.2.1 Up-down counter. Figure 5.43 shows a 4-bit binary up-down
counter. The counter has a synchronous rst input and a parallel load
enable, ld. If u_d is 1 count-up, and if it is 0 count-down is done. When
counting up, when q reaches 1111 adding a 1 and capturing the most
significant four bits causes the count sequence to roll back to 0000 and
continue the count from there.

5.3.2.2 Gray code counter. A Gray code counter, or any count sequence
for which arithmetic operators cannot be used, can be implemented by
a table look-up for building a conversion function. We develop our Gray
code counter by use of a table look-up using an external memory file.

The next count is looked up from a memory of sixteen 4-bit entries.
Each memory location contains the address of the location treated as a
Gray code number, plus 1. For example, location 7 (0111) contains 0101.
Note that 0111 is 5 in Gray and its next count up is 0101 that is the Gray
code for 6.

For the implementation of this counter, we use the style of coding in
which all the combinational functions are done in one always block
and sequential parts in another. Figure 5.44 corresponds to this style
of coding. In this figure, the combinational block takes ld, q, and d_in
as input. If ld is 1 then im_q becomes equal to d_in. If ld is 0, then q,
treated as a Gray code, is incremented and appears on im_q. The reg-
ister block takes im_q and clocks it into the reg output of the counter.

Figure 5.45 shows the corresponding Verilog code. In an initial block,
the mem.dat external file is read into mem reg. In the combinational

162 Chapter Five

`timescale 1ns/100ps

module counter (input [3:0] d_in, input clk, rst, ld, u_d,
output reg [3:0] q);

always @(posedge clk) begin
if(rst)

q = 4’b0000;
else if(ld)

q = d_in;
else if(u_d)

q = q + 1;
else

q = q - 1;
end

endmodule

Figure 5.43 Up-Down Counter

always block, the present count value q is read and used as an index
for mem. The value read from mem is put into im_q. The register always
block handles clocking and synchronous resetting.

The table look-up of Fig. 5.45 makes this description adaptable to
other counting sequences. Without having to recompile this code, and
by just changing the contents of mem.dat, other count sequences can be
implemented. Furthermore, because we have separated combinational
and sequential parts of this design, changes in clocking or resetting
mechanisms only affect the register block, and the combinational always
block remains intact.

5.3.3 LFSR and MISR

A linear feedback shift register (LFSR) is used for pseudo random
number generation. An LFSR is a shift register with feedback and XOR
gates in its feedback or shift path. The initial content of the register is
referred to as seed, and the position of XOR gates is determined by the

Sequential Circuit Description 163

d_in[3:0]

ld

gray_counter

combinational

clk

im_q

q[3:0]

rst

register

Figure 5.44 Gray Code Counter Diagram

polynomial (poly) of the LFSR. A multiple input signature register
(MISR) is like an LFSR, with parallel input and output. A MISR is used
for signature generation of multi-bit input vectors.

5.3.3.1 LFSR. Figure 5.46 shows an LFSR made of D-type flip-flops and
XOR gates in its shift path. The position of XOR gates determine the
poly of this circuit, which is poly = 10101. The seed, which is the initial
value of the register, affects set and reset inputs of the individual flip-
flops of the shift register. The LFSR seed and poly determine bit values
that are generated on the serial output of the circuit (sout), as serial
input bits (sin) are being shifted in.

Figure 5.47 shows the LFSR Verilog code. This code describes the
structure of LFSR using XOR gates and positive edge D-type flip-flops
with asynchronous set and reset inputs. The structural_lfsr module
wires four flip-flops, two XOR gates in between flip-flops, and set and
reset inputs of the flip-flops are wired according to the seed parameter
of this module. When init becomes 1, the LFSR seed is asynchronously
loaded into the register (four flip-flops).

We have used the Verilog replication construct array of instances and
for wiring the flip-flops of this LFSR. The init input is replicated four times
and ANDed with the 4-bit seed vector to form the set inputs of the flip-flops.

164 Chapter Five

`timescale 1ns/100ps

module gray_counter (input [3:0] d_in, input clk, rst, ld,
output reg [3:0] q);

reg [3:0] mem[0:15];
reg [3:0] im_q;
initial

$readmemb(“mem.dat”, mem);
always @(d_in or ld or q) begin: combinational

if(ld)
im_q = d_in;

else
im_q = mem[q];

end
always @(posedge clk) begin: register

if(rst)
q <= 4’b0000;

else
q <= im_q;

end
endmodule

Figure 5.45 Verilog Code of a Gray Counter

The reset inputs become active when init is 1 and a corresponding bit of
seed is 0.

Figure 5.48 shows a generic Verilog code for an LFSR. This behavioral
code uses poly and seed parameters. The poly 4-bit parameter specifies
where between flip-flops XOR gates are inserted. As in the struc-
tural_lfsr of Fig. 5.47, seed is the initial value for the register of LFSR.

An always block in the behavioral_lfsr module of Fig. 5.48 handles
initialization, LFSR configuration, and shift-in and shift-out of data. The
im_data reg holds the contents of the LFSR register. In the shift mode,
the feedback from the right-most bit of the register (im_data[0]) is
XORed with sin serial input, and is clocked into the left-most bit of the
LFSR. Inputs of all remaining LFSR bits are either taken directly from
flip-flops to their left (see Fig. 5.46) or from the XOR result of the feed-
back and the output of the flip-flop to their left. The XOR result will be
taken if the corresponding poly bit is 1. For example if poly[2] is 1,
im_data[0] is selected and XORed with im_data[3] and is used for input
of im_data[2].

Sequential Circuit Description 165

dffsin im1 im2

im3

im4 im5

clk

init

init&seed[3]

init&~seed[3]

init&seed[2]

init&~seed[2] init&~seed[1]

init&seed[0]

init&~seed[0]

lfsr

sout

d

clk

dff

q

rst

set

dff dff dff

init&seed[1]

Figure 5.46 An LFSR with 10101 Polynomial

166 Chapter Five

`timescale 1ns/100ps

module dff (input clk, set, rst, d, output reg q);
always @(posedge clk or posedge set or posedge rst)

if(set)
q <= 1’b1;

else if(rst)
q <= 1’b0;

else
q <= d;

endmodule

module structural_lfsr #(parameter [3:0] seed=4’b0)
(input clk, init, sin, output sout);

wire im1, im2, im3, im4, im5;
dff ff[3:0] (clk, {4{init}}&seed, {4{init}}&~seed,

{im1,im2,im4,im5}, {im2,im3,im5,sout});
xor (im1, sin, sout);
xor (im4, im3, sout);

endmodule

Figure 5.47 Structural LFSR Verilog Code

`timescale 1ns/100ps

module behavioral_lfsr #(parameter [3:0] poly=0, seed=0)
(input clk, init, sin, output reg sout);

reg [3:0] im_data;
always @(posedge clk or posedge init)

begin
if(init)

im_data = seed;
else

im_data = { sin^ im_data[0],
im_data[3:1] ^ (poly[2:0] & {3{im_data[0]}} };

sout = im_data[0];
end

endmodule

Figure 5.48 Behavioral LFSR Code

5.3.3.2 Multiple input signature register. A MISR is used for signature
generation and data compression. Over a period of several clocks, par-
allel data into a MISR are compressed with the existing MISR data. The
final data depends on the MISR initial data (seed) and its XOR and
feedback structure (poly).

Figure 5.49 shows a MISR with a configurable polynomial (poly). The
circuit has a reset input that initializes it to 0000. This initial value is
considered as the seed of this MISR example.

The Verilog code of Fig. 5.50 corresponds to the hardware of Fig. 5.49.
An always block in this code handles resetting and signature genera-
tion. The generation of the signature is based on the input poly that con-
figures the feedback (d_out[0]) connections to the XOR gates that are
between the flip-flops.

This configuration is done by the expression that appears on the right-
hand side of d_out. In this expression parallel data input bits (d_in) are
XORed with right shifted output data ({1’b0, d_out[3:1]}), and are then
selectively XORed with feedback coming from the right-most bit of the
shift register. Selecting feedback from the right-most bit to affect input
logic of a register bit is determined by the bits of poly. This selection is
done by ANDing poly bits with the replication of the feedback from the
right-most bit.

5.3.4 Stacks and queues

A combination of styles presented for register modeling and memory
read and write operations can be used for describing stacks and queues.
A queue has a memory block and read and write pointers. Read and
write pointers are described as registers and counters that provide
address pointers for the queue memory. Combinational logic blocks are
used for providing full and empty indicators for the queue memory.

5.3.4.1 FIFO queue. A first in first out (FIFO) queue is a queue of data
such that the data that is written into it first, is read from it first.
Figure 5.51 shows the block diagram of a FIFO queue.

The pointer block provides read and write pointers according to read
and write operations into the queue. The count block keeps track of the
number of data in the queue and issues empty and full flags. These
flags are generated by combinational blocks using the present count of
data as input. The read block uses the read pointer to read from the
queue memory, and the write block uses the write pointer to write into
this memory. The read and write blocks share the fifo_ram memory.
Read and write operations are synchronized with the circuit clock.

The Verilog code of the FIFO queue is shown in Fig. 5.52. As shown, four
always blocks that are sensitive to the positive edge of the clock handle
writing (write), reading (read), updating read and write pointers (pointer),

Sequential Circuit Description 167

168

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

Q
SET

CLR

D

Q

QSET

CLR

D

poly[1]poly[2] poly[0]
d
_
in

[3
]

d
_

in
[2

]

d
_

in
[1

]

d
_
in

[0
]

clk

poly[3]

d
_

o
u

t[
3

]

d
_

o
u

t[
2

]

d
_

o
u

t[
1

]

d
_

o
u

t[
0

]

rst

Figure 5.49 MISR Circuit

Sequential Circuit Description 169

`timescale 1ns/100ps

module #(parameter [3:0] poly=0) misr (input clk, rst,
input [3:0] d_in, output reg [3:0] d_out);

always @(posedge clk)
if(rst)

d_out =4’b0000;
else

d_out = d_in ^ ({4{d_out[0]}} & poly)
^ {1’b0, d_out[3:1]};

endmodule

Figure 5.50 MISR Verilog Code

rd_ptr

wr_ptr

clk

data_in

fifo

rd

wr

write

full

empty

read

data_out

rst

count

fifo_cnt

clk

rst

rd

wr

empty

full

fifo_ram

pointer

Figure 5.51 FIFO Block Diagram

170 Chapter Five

module fifo (input [7:0] data_in, input clk, rst, rd, wr,
output empty, full, output reg [3:0]fifo_cnt,
output reg [7:0] data_out);

reg [7:0] fifo_ram[0:7];
reg [2:0] rd_ptr, wr_ptr;
assign empty = (fifo_cnt==0);
assign full = (fifo_cnt==8);
always @(posedge clk) begin: write

if(wr && !full)
fifo_ram[wr_ptr] <= data_in;

else if(wr && rd)
fifo_ram[wr_ptr] <= data_in;

end
always @(posedge clk) begin: read

if(rd && !empty)
data_out <= fifo_ram[rd_ptr];

else if(rd && wr && empty)
data_out <= fifo_ram[rd_ptr];

end
always @(posedge clk) begin: pointer

if(rst) begin
wr_ptr <= 0;
rd_ptr <= 0;

end else begin
wr_ptr <= ((wr && !full)||(wr && rd)) ? wr_ptr+1 :

wr_ptr;
rd_ptr <= ((rd && !empty)||(wr && rd)) ? rd_ptr+1 :

rd_ptr;
end

end

always @(posedge clk) begin: count
if(rst) fifo_cnt <= 0;
else begin

case ({wr,rd})
2’b00 : fifo_cnt <= fifo_cnt;
2’b01 : fifo_cnt <= (fifo_cnt==0) ? 0 : fifo_cnt-1;
2’b10 : fifo_cnt <= (fifo_cnt==8) ? 8 : fifo_cnt+1;
2’b11 : fifo_cnt <= fifo_cnt;
default: fifo_cnt <= fifo_cnt;

endcase
end

end
endmodule

Figure 5.52 FIFO Queue Verilog Code

and keeping the FIFO count (count). Concurrent with these blocks two
assign statements issue empty and full.

The write block writes into fifo_ram if it is not full. If both rd and wr
inputs are active (reading at the same time as writing), full is not
checked and memory is written into. If none of these conditions hold,
then memory is left intact. The read block reads from fifo_ram if it is
not empty. If it is empty and both rd and wr inputs are active, data from
the present pointer location is read into data_out. This output reg is left
intact if neither read conditions are satisfied.

The pointer block implements two counters for read and write point-
ers. Separate from these pointers, the count always block performs
incrementing and decrementing fifo_cnt depending on write and read
operations being done. The count block uses a case statement with
default, which handles ambiguous values on wr and rd. In this case,
fifo_cnt is left intact.

5.4 State Machine Coding

Coding styles presented so far can further be generalized to cover finite
state machines of any type. This section shows coding for Moore and
Mealy state machines. The examples we will use are simple sequence
detectors, yet they represent coding for complex control-heavy digital cir-
cuits, or the controller part of an RT level design.

5.4.1 Moore machines

A Moore machine is a state machine in which all outputs are fully syn-
chronized with the circuit clock. In the state diagram form, each state
of the machine specifies its output(s) independent of circuit inputs. In
the Verilog code of a Moore state machine, only circuit state variables
participate in the output expression of the circuit.

Figure 5.53 shows a 101 Moore sequence detector with its corre-
sponding block diagram related to its Verilog coding. The machine
searches for 101 on its input and when received, the output of the cir-
cuit becomes 1 and remains at this level for a complete clock period. As
shown in the state diagram, when the machine reaches the got101 state,
its output becomes 1.

The block diagram of the Verilog coding that will be used for this
machine is also shown in Fig. 5.53. An always block that handles state
transitions and clocking generates current state of the machine. This
variable is used by an assign statement that generates the z output of
the circuit.

Figure 5.54 shows the Verilog code of moore_detector. We have used
a localparam declaration to assign values to the states of the machine.

Sequential Circuit Description 171

Because our machine has four states, 2-bit parameters are used for the
state names. Furthermore, the declaration part of the moore_detector
module declares current as a 2-bit reg. This variable is used for hold-
ing the current state of the machine.

The always block of Fig. 5.54 implements a positive edge trigger
sequential block with a synchronous reset (rst) input. If rst is active, cur-
rent is set to reset, otherwise, a case statement assigns next state values
to current. Next states of the machine are decided by the current state
that is the case expression, and input values.

Each state of the machine is implemented by a case alternative, and
its next state transitions are implemented by if statements conditioned
by the x input of the circuit. Figure 5.55 shows a correspondence between
the got10 state of the machine and its Verilog coding. This state branches
out to got101 or reset depending on x. The output of the circuit is imple-
mented by a separate assign statement that puts a 1 on z when cur-
rent is got101.

Because this is a Moore machine, the condition for asserting the
output of the circuit only includes the current variable, and circuit
input(s) are not included. Figure 5.56 shows another Moore machine
example. This machine searches for 110 or 101 sequences on its x input.
The search allows overlapping sequences.

The Verilog code of the Moore machine of Fig. 5.56 is shown in Fig. 5.57.
We are using ̀ define directives for assigning values to the state names.
Note that using names is only for readability purposes, and instead of
using `define or localparam, as in the previous example, state values
could be used in the case statement of this Verilog code.

The Verilog code shown here implements a state machine with asyn-
chronous active high reset (rst) input. For this purpose, posedge rst is
included in the sensitivity list of the always block. In this always
block, the last case alternative is the default case that accounts for

172 Chapter Five

got1

0

got101

1

got10

0

reset

0

0

1 1

0

1

1

1

0

moore_detector

x

rst

clk
current z

Figure 5.53 A Moore 101 Detector

ambiguous values of current, as well as those values that are not spec-
ified as valid states of this machine. Because we are using three state
variables (reg [2:0] current), eight states are allowed from which only
six are specified. The other two states are invalid states and are han-
dled by the default case alternative.

Assignment of values to the z output is handled by the assign state-
ment in Fig. 5.57. This output becomes 1 when current is `got101 or
`got110.

Sequential Circuit Description 173

`timescale 1ns/100ps

module moore_detector (input x, rst, clk, output z);
localparam [1:0]

reset=0, got1=1, got10=2, got101=3;
reg [1:0] current;
always @(posedge clk) begin

if(rst) current <= reset;
else case (current)

reset: begin
if(x==1’b1) current <= got1;
else current <= reset;

end
got1: begin

if(x==1’b0) current <= got10;
else current <= got1;

end
got10: begin

if(x==1’b1) current <= got101;
else current <= reset;

end
got101: begin

if(x==1’b1) current <= got1;
else current <= got10;

end
default: begin

current <= reset;
end

endcase
end

assign z = (current==got101) ? 1 : 0;
endmodule

Figure 5.54 Moore Machine Verilog Code

5.4.2 Mealy machines

A Mealy machine is different from a Moore machine in that its output(s)
depend on its current state and inputs while in that state. State tran-
sitions, clocking, and resetting the machine are not different from those
of a Moore machine, and the same coding techniques are used for
describing them.

174 Chapter Five

got101
1

resetcurrent = reset;

current = got101;

0

got10

1

0

got10: begin

if (x==1'b1) begin

end

else begin

end
end

. . .
assign z = (current == got101) ? 1 : 0;

Figure 5.55 Verilog Coding Correspondence with the
got10 State

reset

0

0

1

got11

0

got110

1

got1

0

got10

0

got101

1

1
0

0

1
0

1

1

0

1

0

Figure 5.56 Moore Machine Detecting 110/101

Sequential Circuit Description 175

`timescale 1ns/100ps

`define reset 3’b000
`define got1 3’b001
`define got10 3’b010
`define got11 3’b011
`define got101 3’b100
`define got110 3’b101

module moore_detector3 (input x, rst, clk, output z);
reg [2:0] current;
always @(posedge clk or posedge rst) begin

if(rst) current = `reset;
else

case (current)
`reset:

if(x==1’b1) current <= `got1;
else current <= `reset;

`got1:
if(x==1’b0) current <= `got10;
else current <= `got11;

`got10:
if(x==1’b1) current <= `got101;
else current <= `reset;

`got11:
if(x==1’b1) current <= `got11;
else current <= `got110;

`got101:
if(x==1’b1) current <= `got11;
else current <= `got10;

`got110:
if(x==1’b1) current <= `got101;
else current <= `reset;

default:
current <= `got101;

endcase
end

assign z = (current == `got101 || current == `got110);
endmodule

Figure 5.57 Verilog Code of Moore Machine Detecting 110/101

Figure 5.58 shows a 101 Mealy sequence detector and its correspon-
ding Verilog code block diagram. This circuit has a synchronous rst
input that resets the machine to its reset state.

The Verilog code of Fig. 5.59 corresponds to this Mealy machine. A
2-bit localparam construct is used for defining the states of this machine.
Because the machine has three states and two state variables are used
to represent them, one combination (i.e., 11) of the state variables
becomes unused. As in the previous example, the default in the case
statement of this Verilog code handles this unspecified combination and
ambiguous values that may appear on current.

The coding of the states and output of this machine are illustrated in
Fig. 5.60. Each state is specified by a case alternative of a case state-
ment for which current is its case expression. Transitions to the next
states of the machine are handled by if-else statements. The output of
the machine is set to 1 using an assign statement that uses a conditional
expression on its right-hand side. This conditional expression uses the
circuit input as well as the current state of the machine.

5.4.3 Huffman coding style

The Huffman model for a digital system characterizes it as a combina-
tional block with feedbacks through an array of registers. According to
the Huffman model, Verilog coding of digital systems uses an always
statement for describing the register part and another concurrent state-
ment for describing the combinational part. This coding style and the
Moore machine example that we will use in this section are shown in
Fig. 5.61. As shown, the combinational block uses x and p_state as input
and generates z and n_state. The sequential block clocks n_state into
p_state, and resets p_state when rst is active.

Figure 5.62 shows the Verilog code of the state diagram of Fig. 5.61 accord-
ing to the partitioning shown. In this code a localparam declaration

176 Chapter Five

got1

got10

reset

0/0

1/0

0/0

0/0

1/0

1/1

mealy_detector

x

rst

clk

current z

Figure 5.58 A 101 Mealy Machine

declares the states of the machine. Following this declaration, n_state
and p_state variables are declared as 2-bit regs that hold values corre-
sponding to the states of the 101 Moore detector. The combinational
always block follows this reg declaration. Since this a purely combi-
national block, it is sensitive to all its inputs, namely x and p_state.
Immediately following the block heading, n_state and z are set to their
inactive or reset values. This is done so that these variables are always
refreshed with new values and never retain their old values. As dis-
cussed before, retaining old values implies latches, which is not what
we want in our combinational block.

Sequential Circuit Description 177

`timescale 1ns/100ps

module mealy_detector2 (input x, rst, clk, output z);

localparam [1:0]
reset = 0, // 0 = 0 0
got1 = 1, // 1 = 0 1
got10 = 2; // 2 = 1 0

reg [1:0] current;

always @(posedge clk) begin
if (rst) current <= reset;
else case (current)

reset:
if(x==1’b1) current <= got1;
else current <= reset;

got1:
if(x==1’b0) current <= got10;
else current <= got1;

got10:
if(x==1’b1) current <= got1;
else current <= reset;

default:
current <= reset;

endcase
end

assign z = (current==got10 && x==1’b1) ? 1’b1 : 1’b0;

endmodule

Figure 5.59 Verilog Code for a 101 Mealy Machine

The body of the combinational always block of Fig. 5.62 contains a case
statement that uses the p_state input of the always block for its case
expression. This expression is checked against the states of the Moore
machine. As in the other styles discussed before, this case-statement has
case alternatives for reset, got1, got10, and got101 states.

In a block corresponding to a particular case alternative, based on
input values, values are assigned to n_state and z output. Unlike the
other styles where current is used both for the present and next states,
here we use two different variables, p_state and n_state.

The next procedural block shown in Fig. 5.62 handles the register
(sequential) part of the Huffman model of Fig. 5.61. In this part, n_state

178 Chapter Five

got10:

if (x == 1'b1)
current = got1;

else

current = reset;

...
assign z = (current == got10 && x == 1) ? 1:0;

got1

got10

reset
0/0

1/1

Figure 5.60 Mealy State Coding

got1

0

got101

1

got10

0

reset

0

0

1 1

0

1

1

1

0

moore_detector

x

n_state[1:0]

clk

p_state[1:0]

z

rst

combinational

sequential

Figure 5.61 Huffman Style of Coding a State Machine

Sequential Circuit Description 179

`timescale 1ns/100ps

module moore_detector4 (input x, rst, clk, output reg z);

localparam [1:0]
reset=2’b00, got1=2’b01,
got10=2’b10, got101=2’b11;

reg [1:0] p_state, n_state;

always @(p_state or x) begin:combinational
n_state = reset;
z = 1’b0;
case (p_state)

reset:
begin

if(x==1’b1) n_state = got1;
else n_state = reset;
z = 1’b0;

end
got1:

begin
if(x==1’b0) n_state = got10;
else n_state = got1;
z = 1’b0;

end
got10:

begin
if(x==1’b1) n_state = got101;
else n_state = reset;
z = 1’b0;

end
got101:

begin
if(x==1’b1) n_state = got1;
else n_state = got10;
z = 1’b1;

end
default:

begin
n_state = reset;
z = 1’b0;

end
endcase

end (Continued)

Figure 5.62 Moore Detector Verilog Code According to Huffman Model

is treated as the register input and p_state as its output. On the posi-
tive edge of the clock, p_state is either set to the reset state (00) or is
loaded with contents of n_state. Together, combinational and sequential
blocks describe our state machine in a very modular fashion.

The advantage of this style of coding is in its modularity and defined
tasks of each block. State transitions are handled by the combinational
block and clocking is done by the sequential block. Changes in clocking,
resetting, enabling, or presetting the machine only affect the coding of
the sequential block. If we were to change the synchronous resetting to
asynchronous, the only change we had to make was adding posedge rst
to the sensitivity list of the sequential block.

5.4.4 A more modular style

For a design with more input and output lines and more complex output
logic, the combinational block may further be partitioned into a block
for handling transitions and another for assigning values to the outputs
of the circuit. For coding both of these blocks, it is necessary to follow
the rules discussed for combinational blocks in the previous chapter.
Figure 5.63 shows a block diagram of this style and a Mealy sequence
detector that we will use for illustrating its Verilog coding.

180 Chapter Five

always @(posedge clk) begin:sequential
if(rst) p_state <= reset;
else p_state <= n_state;

end

endmodule

Figure 5.62 Moore Detector Verilog Code According to Huffman Model (Continued)

got
1

got10

reset

0/0

1/0

1/0

0/0

0/0

1/1

got11

1/0

0/1

mealy_detector

x

n_state[1:0]sequential

clk

p_state[1:0]

z

rst

combinational output_block

Figure 5.63 Using Three Separate Blocks for Describing a State Machine

Figure 5.64 shows the Verilog code for a Mealy machine that detects
a sequence of 110 on its x input. This code uses two separate blocks for
assigning values to n_state and the z output. In a situation like what we
have in which the output logic is fairly simple, a simple assign state-
ment could replace the output_block procedural block. In which case, z
would have to be a net and not a reg.

The examples discussed above, in particular, the last two styles, show
how combinational and sequential coding styles can be combined to
describe very complex digital systems.

5.4.5 A ROM based controller

Instead of coding state transitions and output values using case and/or
if-else statements, a single memory lookup can be used for representing
the combinational part of a state machine. The memory lookup uses the
present state of the machine and its inputs for address, and reads the
next state and the controller outputs as data from the memory. The
block diagram for this style of coding is the same as that of Fig. 5.61,
except that the combinational part is implemented as a memory.

The example we use for illustrating the coding of a ROM-based con-
troller is the Mealy machine of Fig. 5.63. The corresponding Verilog
code is shown in Fig. 5.65. The memory that implements the combina-
tional part of our circuit, as a ROM-based logic or a logic array, is loaded
with the contents of mealy.dat at time 0. This is done in an initial block
using the $readmemb task. Combinational reading from the memory
is done by an assign statement. The address of mem is formed by con-
catenation of the x input and p_state, and the data read from the memory
is assigned to the concatenation of the z output and n_state.

Contents of the memory at any given location are circuit output(s) con-
catenated with the next-state of the machine. Figure 5.66 shows
mealy.dat file for implementing the Mealy machine of Fig. 5.63.

As in the previous examples, the sequential part of our Mealy machine
example is implemented by an always block that is sensitive to the pos-
itive edge of the clock. This block clocks n_state that is read from the
memory into p_state that becomes the address input of the memory.

5.5 Sequential Synthesis

The process of synthesis involves describing a hardware in an accept-
able form for the synthesis tool to recognize and then specifying a target
library representing available low-power components to map to. The
target library has combinational and sequential components. Exactly
how a synthesizable Verilog input description translates to hardware
depends on the specific target library. For example, if an input descrip-
tion involves a latch and the target library does not have a latch, then

Sequential Circuit Description 181

182 Chapter Five

`timescale 1ns/100ps
module mealy_detector6 (input x, en, clk, rst, output reg z);

localparam [1:0]
reset=2’b00, got1=2’b01, got10=2’b10, got11=2’b11;

reg [1:0] p_state, n_state;

always @(p_state or x) begin:combinational
case (p_state)

reset:
if(x==1’b1) n_state = got1;
else n_state = reset;

got1:
if(x==1’b0) n_state = got10;
else n_state = got11;

got10:
if(x==1’b1) n_state = got1;
else n_state = reset;

got11:
if(x==1’b1) n_state = got11;
else n_state = got10;

default:
n_state = reset;

endcase
end

always @(p_state or x) begin:output_block
case (p_state)

reset:
z=1’b0;

got1:
z=1’b0;

got10:
if(x==1’b1) z=1’b1;
else z=1’b0;

got11:
if(x==1’b1) z=1’b0;
else z=1’b1;

default:
z=1’b0;

endcase
end (Continued)

Figure 5.64 A Mealy Machine Using Three Procedural Blocks

a latch will be build using gates or logic functions that are available in
the target library.

Verilog models described in this chapter, except those with initial
statements loading a memory, are synthesizable. In this section, we
will go back and look at several typical styles of coding and discuss the
kind of hardware that they synthesize to.

5.5.1 Latch models

Except for the delay values, the latch Verilog description of Fig. 5.14 is
synthesizable. If a target hardware library contains a D-latch, it will be
used for mapping this description, otherwise it will be built by wiring
existing target hardware parts.

Sequential Circuit Description 183

always @(posedge clk) begin:sequential
if(rst) p_state <= reset;
else if(en) p_state <= n_state;

end

endmodule

Figure 5.64 A Mealy Machine Using Three Procedural Blocks (Continued)

`timescale 1ns/100ps

module mealy_detector7 (input x, clk, rst, output z);
localparam [1:0]

reset=2’b00, got1=2’b01, got10=2’b10, got11=2’b11;

reg [1:0] p_state;
wire [1:0] n_state;
reg [2:0] mem[0:7];
initial

$readmemb(“mealy.dat”, mem);
assign { z, n_state } = mem[{ x, p_state }];
always @(posedge clk) begin:sequential

if(rst) p_state <= reset;
else p_state <= n_state;

end

endmodule

Figure 5.65 ROM-Based State Machine Coding

Figure 5.67 shows an Altera field programmable gate array (FPGA)
logic element that has several logic gates, a look-up table, and a flip-flip.
The implementation of a D-latch is highlighted in this diagram. The gray
areas are those parts of the logic element (LE) that are actually used
for our latch. As shown, the latch is implemented by programming the
look-up table (the rectangular box with A, B, C, D inputs). The output
of this table is the latch output and also feeds back to the table to cause
the latching action. Note in this figure that the flip-flop (the rectangu-
lar box on the right) of the FPGA logic element is not used.

5.5.2 Flip-flop models

The Verilog code of Fig. 5.17 shows a synthesizable D-type flip-flop
(ignoring delays). The FPGA logic element used for realization of this
flip-flop is shown in Fig. 5.68.

184 Chapter Five

000
010
000
110
001
011
101
011

Figure 5.66 mealy.dat Memory File

feedback

output and feedback

A

B

C

D

feedback

feedback

input D

input C

Figure 5.67 FPGA Latch Implementation

As shown, the FPGA cell contains a flip-flop that corresponds to the
required Verilog behavior, and is therefore used for implementing our
Verilog flip-flop description. If the FPGA flip-flop does not exactly match
the required behavior, e.g., requiring a JK flip-flop implementation, the
logic around the flip-flop would be used for realization of the correct
behavior.

The flip-flop of the logic element of Fig. 5.68 has asynchronous preset
and clear inputs (pins on the top part of the flip-flop), and would be uti-
lized if the input Verilog description required them. However, if a syn-
chronous control is required, the logic in the FPGA logic element, i.e.,
the look-up table, will be used. Figure 5.69 shows the realization of a
flip-flop with synchronous reset input.

As compared with the logic element of Fig. 5.68, the logic element of
Fig. 5.69 uses its look-up table for bringing in a synchronous 0 into the
flip-flop for resetting it.

5.5.3 Memory initialization

As discussed previously in this section, initial statements and memory
initialization tasks are not synthesizable. Therefore the Gray counter
of Fig. 5.45 or the state machine of Fig. 5.65 is not accepted by most pres-
ent commercial synthesis tools. On the other hand, most synthesis tools
provide a mechanism for specifying ROM based logic. For example, in

Sequential Circuit Description 185

A
s
y
n
c
h

S
e
lU

p
p
e
r

aCLR aLD

aD

D Q

en

A A

B

C

A

B

C

B

C

D

Input D

clk

OutFF

Figure 5.68 FPGA Flip-Flop Implementation

Altera’s Quartus environment a memory block and its initialization file
can be specified outside of a Verilog module. This memory is directly
mapped to the FPGA memory.

5.5.4 General sequential circuit synthesis

Sequential circuits consist of a combinational and a register part. For
the synthesis of the combinational parts, rules discussed in Chap. 4
must be followed. For the synthesis of the register parts, clocking rules
and rules regarding synchronous and asynchronous controls must be
observed. Discussions in Sec. 5.5.2 about flip-flop synthesis, apply to
individual bits of the register part of a sequential circuit.

5.6 Summary

This chapter presented Verilog description of sequential circuits. We
presented memory elements at the gate, boolean and behavioral levels.
Most of this chapter, however, concentrated on the behavioral descrip-
tion of sequential circuits. We discussed sequential circuits as simple as
latches and flip-flops and as complex as queues and sequence detectors.
We showed that we follow the same basic rules for description of these
circuits. Most styles of coding presented in this chapter were synthe-
sizable. The last section of this chapter showed synthesis correspondence
of several typical styles.

186 Chapter Five

A
s
y
n

c
h

Input C

clk

OutFF

Input D

A

B

C

D

aCLR aLD

aD

D Q

en

Figure 5.69 Logic Element Used for a Flip-Flop with Synchronous Reset

Problems

5.1 Show Verilog code of an SR-latch with active low set and reset inputs.

5.2 Write a negative edge trigger D-type flip-flop with an asynchronous active-
low reset, a synchronous active-high set, and an active-high clock enable input.

5.3 Write a 32 word register file in Verilog which reads its data from a file named
data.mem. It has a 5-bit address input named index and a read input signal. When
the read input is 1, the output of the memory is equal to the data written in the
index address of the register file, otherwise the output equals 8’bZZ.

5.4 Show synthesizable Verilog code for a register unit that performs
operations shown below. The unit has a 3-bit mode (md) input, an asynchronous
reset (rs) input, a 1-bit output control (oc) input, and an 8-bit bidirectional io
bus. The internal register drives the io bus when oc is 1 and md is not 111.

md=000: does nothing

md=001: right shift the register

md=010: left shift the register

md=011: up count, Gray (000, 001, 011, 010, 110, 111, 101, 100)

md=100: down count, Gray (opposite of the above)

md=101: complement register contents

md=110: swap right and left 4 bits

md=111: parallel load

5.5 Design an 8-bit shifter with parallel input and output, sin_l, sin_r input lines,
and shift and parallel control signals. When the shift signal is issued, data on sin_l
and sin_r lines will be entered to the most and least significant bits of the register
respectively, and third and fourth bits of the register will be put on a 2-bit output
line named out. No shifting will be done if the unit is in parallel mode.

5.6 Show the Verilog code of the following up-down counter. The counter has
a u input that controls its count direction. If u is 1, it counts 010, 011, 101, 011,
111, 001 If u is 0, it counts this same sequence in the opposite direction.

5.7 Show Verilog code for a 4-bit counter that counts the following sequence:
0100, 0001, 1011, 1010, 0111, 1111, 0111, 0000, 1000. Write this according to
the Huffman model in which the logic part is separate from the register part.
Code the logic part by a memory, mem, that is initialized in a procedural block
using the $readmemh system task. This task should read the contents of
mem.dat file and load it into mem. Show the complete Verilog code and contents
of the memory file.

5.8 Write Verilog description for an 8-word FILO stack with 8-bit input and
output data lines and rd and wr input signals. The stack has a full output flag,
that when it becomes 1, the stack cannot accept any more data.

Sequential Circuit Description 187

5.9 Show the Verilog code for a Moore 100110 detector using the Huffman style
of coding.

5.10 Show the design of a Mealy machine sequence detector that detects the
100 and 001 sequences on its serial input. Provide an asynchronous reset input
that starts the detector in its first state.

5.11 A sequential circuit has a synchronizing input, s, and two data inputs a
and b that are treated as a 2-bit binary number ({a,b}). After a start sequence
of 110 on s, the machine starts adding data on the data inputs and produces the
modulo-4 add result of all the data received on the data inputs. This continues
until an end sequence, 011, is received on s. At this time the machine goes into
the halt state and ignores all the data on its a and b inputs. While in this state,
the machine searches for the start sequence on s. The start and end sequences
do not overlap. Write a Verilog description for this circuit.

5.12 A simple sequential multiplier is developed by adding A to itself B number
of times. Both A and B inputs are 8-bit unsigned numbers. The circuit has a start
input that becomes 1 for one clock when the inputs are valid. The inputs will
not be valid when this signal is 0. After the start, the circuit sets its done output
to 0 and starts the multiplication process. When done, it puts the result on R
and sets done to 1. Given the following interface, write the complete code of this
multiplier.

5.13 A data collector module has seven data registers of length 15 driving its
seven 15-bit outputs. This module has ser_data serial input, data_ready input
indicating when the stream of data is available on ser_data, and the busy
output. A 112 (112 = 7*15 + 4 + 3) bit packet starts on ser_data when data_ready
becomes 1. A packet starts with its header that includes 4 bits for m, followed
by 3 bits for n, and it is then followed by n*m data bits. The data bits of a packet
constitute n m-bit data words. Bits of data words are arranged from least to most.
There are always fewer than 8 data words (n <= 7) and each data-word has less
than 16 bits (m <= 15). After the header, the first m bits are those of data-word 1,
immediately followed by m bits of data-word 2, and at the end, m bits of data-
word n. Your module should separate the data words and put them in its 15
registers. The registers should be left-filled with 0s for m<15. For n of less than 7,

188 Chapter Five

module mult (a, b, start, clk, r, done);
input [7:0] a, b;
input start, clk;
output [15:0] r;
output done;
reg [7:0] abuf, bbuf; // use these if you like
reg [15:0] r;
. . .
endmodule

only the first n registers will be filled and the rest will be filled with zeros.
Write a synthesizable DataCollector module.

5.14 Write an always statement to count the number of 1s in a given reg
[255:0] InVec. Declare all necessary registers and wires. The system clock (clk)
is available for you to use.

5.15 An important issue in CPU modeling and testing is modeling of its
memory. Because of machine memory limitations, a CPU memory must be
modeled to use external files. In this problem you are to write a memory model
that initially reads hexadecimal data from an external file, mem_file.dat, and
holds it in its internal buffer. Data being read from the memory will be read from
the buffer and data being written into the memory will be written into the
buffer and into the external memory file, mem_file.dat, at the same time. Assume
the data in mem_file.dat is for the first 256 words of the memory. You are to
implement this memory for addresses 0 to 255 only, and reading from addresses
outside of this range will return Xs. The memory model will ignore writing
outside of this range. Use the module declaration shown below.

Suggested Reading

Brown, S., and Z. Vranesic, Fundamentals of Digital Logic with Verilog Design, McGraw-
Hill, New York, 2002, ISBN: 0-07-283878-7.

IEEE Std 1364-2001, IEEE Standard Verilog Language Reference Manual, SH94921-
TBR (print) SS94921-TBR (electronic), ISBN 0-7381-2827-9 (print and electronic),
2001.

Navabi, Z., Verilog Computer-Based Training Course, CBT CD with hardcopy User’s
manual, McGraw-Hill, 2002, ISBN 0-07-137473-6.

Nelson, V. P., H. T. Nagle, B. D. Carroll, and et al., Digital Logic Circuit Analysis &
Design, Prentice-Hall, Inc., New Jersey, 1996.

Sequential Circuit Description 189

module memory (mem_wr, mem_rd, databus, adbus);
input mem_wr, mem_rd;
inout [7:0] databus ;
input [15:0] adbus;
. . .
endmodule

This page intentionally left blank

Chapter

6
Component Test and Verification

The previous chapters discussed Verilog for describing combinational
and sequential circuits. Except in a few cases, where we dealt with
timing of modules, language constructs we discussed were synthesiz-
able. This chapter discusses the use of the Verilog language for testing
design modules. We will see that timing and display procedures become
more important when dealing with testbench modules.

This chapter shows how Verilog language constructs can be used for
application of data to a module under test (MUT), and how module
responses can be displayed and checked. In the first part of this chapter
data application and response monitoring are discussed. In the second part,
we discuss the use of assertion verification for giving a better observabil-
ity to our design modules. Advanced utilization of external files for test-
ing will be put off until Chap. 8, where system design and test is described.

6.1 Testbench

Verilog simulation environments provide tools for graphical or textual
display of simulation results. Some simulation environments go fur-
ther, and provide graphical tools for editing input test data to a design
module that is being tested. Such tools are referred to as waveform edi-
tors, and are usually good for small designs. They become too complex
to use for a design with many busses and control signals. Another prob-
lem with waveform editors is that each simulation environment uses a
different procedure for waveform editing, and moving from one simu-
lator to another requires relearning a whole new set of procedures.

This problem can be alleviated by use of Verilog testbenches. A Verilog
testbench is a Verilog module that instantiates an MUT, applies data to
it, and monitors its output. Because a testbench is in Verilog, it can go from

191

Copyright © 2006 by The McGraw-Hill Publishing Companies, Inc. Click here for terms of use.

one simulation environment to another. A module and its corresponding
testbench form a simulation model in which MUT is tested for the same
input data regardless of what simulation environment is used.

To facilitate development of testbenches, some simulation environ-
ments provide testbench tools that automatically generate a template
testbench. Such tools also provide ways of inserting templates for gen-
eration of test data for applying them to MUT. Using templates is help-
ful, but a designer must understand testbenches and language
constructs that are used for testing a design module. In the next two sub-
sections basics of testbenches are discussed.

6.1.1 Combinational circuit testing

Developing a testbench for a combinational circuit is straight forward,
however selection of data and how much testing should be done depends
on the MUT and its functionality.

Chapter 4 presented a simple arithmetic logical unit (ALU) (Fig. 4.63)
that we use here to test. Module header and declarations of its ports are
repeated in Fig. 6.1 for reference. The alu_4bit module is a four func-
tion ALU. Data inputs are a and b, and its function input is f. In addi-
tion to its y data output, the ALU generates parity (p), overflow (ov), and
compare outputs.

A testbench for alu_4bit is shown in Fig. 6.2. Variables correspon-
ding to inputs and outputs of the module under test are declared in the
testbench. Variables connecting to the inputs are declared as reg and
outputs as wire. Instantiation of alu_4bit shown in the testbench asso-
ciates local regs and wires with the ports of this module.

Variables that are associated with the inputs of alu_4bit have been
given initial values when declared. Application of data to the b data
input and oe output-enable of ALU are done in an initial statement. For

192 Chapter Six

Figure 6.1 alu_4bit Module Declaration

module alu_4bit (a, b, f, oe, y, p, ov, a_gt_b, a_eq_b,
a_lt_b);

input [3:0] a, b;
input [1:0] f;
input oe;
output [3:0] y;
output p, ov, a_gt_b, a_eq_b, a_lt_b;

// . . .

endmodule

the first 60 ns every 20 ns, a new value is assigned to b. The initial block
then waits for 80 ns, disables the ALU output by setting oe to 0, and after
20 ns it finishes the simulation. This last 20 ns wait, allows effects of
the last input change to be shown in simulation results.

Application of data to the f input of alu_4bit is done in an always state-
ment. Starting with the initial value of 0, f is increment by 1 every 23 ns.

The $finish statement in the initial block of the testbench is reached
at 160 ns. At this time all active procedural blocks stop and simulation
terminates. Figure 6.3 shows simulation results of the alu_4bit module.

Component Test and Verification 193

Figure 6.2 Testbench for alu_4bit

module test_alu_4bit;
reg [3:0] a=4’b1011, b=4’b0110;
reg [1:0] f=2’b00;
reg oe=1;
wire [3:0] y;
wire p, ov, a_gt_b, a_eq_b, a_lt_b;

alu_4bit cut(a, b, f, oe, y, p, ov, a_gt_b, a_eq_b,
a_lt_b);

initial begin
#20 b=4’b1011;
#20 b=4’b1110;
#20 b=4’b1110;
#80 oe=1’b0;
#20 $finish;

end
always #23 f = f + 1;

endmodule

Figure 6.3 ALU Simulation Results

Throughout the simulation a remains constant, and b changes from 6
to B and then to E at 40 ns. The f function input changes every 23 ns
causing various ALU functions to be examined. At 140 ns, oe changes
to 0, causing the y output become Z.

6.1.2 Sequential circuit testing

Testing sequential circuits involves synchronization of circuit clock with
other data inputs. We use the misr module of Chap. 5 for an example
here. This circuit, repeated in Fig. 6.4 for reference, has a clock input,
a reset, data inputs, and outputs.

The circuit has a poly parameter that determines its signature and
data compression. With each clock a new signature will be calculated
with the new data and existing misr register data.

Figure 6.5 show a testbench for misr. As before, variables correspon-
ding to the ports of MUT are declared in the testbench. When misr is
instantiated, these variables are connected to its actual ports. Our misr
instance also includes specification of its poly parameter.

The initial block of this testbench generates a positive pulse on rst
that begins at 13 ns and ends at 63 ns. The timing is so chosen to cover
at least one positive clock edge, so that the synchronous rst input can
initialize the misr register. The d_in data input begins with x, and is ini-
tialized to 4’b1000 while rst is 1.

In addition to the initial block, the test_misr module includes two
always blocks that generate data on d_in and clk. Clock is given a peri-
odic signal that toggles every 11 ns. The misr d_in input is assigned a
new value every 37 ns. In order to reduce chance of several inputs chang-
ing at the same time, we usually use prime numbers for timing of
sequential circuit inputs.

194 Chapter Six

Figure 6.4 misr Sequential Circuit

module #(parameter [3:0] poly=0) misr (input clk, rst,
input [3:0] d_in, output reg [3:0] d_out);

always @(posedge clk)
if(rst)

d_out =4’b0000;
else

d_out = d_in ^ ({4{d_out[0]}} & poly) ^
{1’b0,d_out[3:1]};

endmodule

As shown in Fig. 6.6, starting at 40 ns with this and every positive edge
of clk, a new signature is generated in misr. Since prior to time 80 ns,
misr is reset to 0, the first signature that happens at 80 ns is the same
as d_in.

6.2 Testbench Techniques

Various Verilog coding techniques for generation of test data and observ-
ing circuit responses are discussed in this section. We use state machines
of Chap. 5 for our test modules. The first example is a 101 Moore detec-
tor circuit depicted in Fig. 6.7.

We have used a coding style that is somewhat different than that
used in Chap. 5. The z output becomes 1 in state d when a sequence of
101 is detected on x. The circuit has a synchronous reset input.

Component Test and Verification 195

Figure 6.5 A Testbench for misr

module test_misr;
reg clk=0, rst=0;
reg [3:0] d_in;
wire [3:0] d_out;

misr #(4’b1100) MUT (clk, rst, d_in, d_out);

initial begin
#13 rst=1’b1;
#19 d_in=4’b1000;
#31 rst=0’b0;
#330 $finish;

end

always #37 d_in = d_in + 3;

always #11 clk = ~clk;

endmodule

Figure 6.6 Testing misr

6.2.1 Test data

A testbench for moore_detector of Fig. 6.7 is shown in Fig. 6.8. As before,
our testbench is a module with no ports. Within this module, four pro-
cedural blocks provide data for testing the state machine. Variables
connected to inputs of MUT and used on the left-hand sides in the pro-
cedural blocks are declared as reg.

196 Chapter Six

Figure 6.7 101 Moore Detector for Test

module moore_detector (input x, rst, clk, output z);

parameter [1:0] a=0, b=1, c=2, d=3;
reg [1:0] current;

always @(posedge clk)
if (rst) current = a;
else case (current)

a : current = x ? b : a ;
b : current = x ? b : c ;
c : current = x ? d : a ;
d : current = x ? b : c ;
default : current = a ;

endcase

assign z = (current==d) ? 1’b1 : 1’b0;

endmodule

Figure 6.8 Basic Data Generation

module test_moore_detector;
reg x, reset, clock;
wire z;

moore_detector MUT (x, reset, clock, z);

initial begin
clock=1’b0; x=1’b0; reset=1’b1;

end
initial #24 reset=1’b0;
always #5 clock=~clock;
always #7 x=~x;

endmodule

Instead of initializing reg variables when they are declared, we have
used an initial block for this purpose. It is important to initialize vari-
ables, like clock, for which their old values are used for determining their
new values. If not done so, clock would start with value X and comple-
menting it would never change its value. The always block shown gen-
erates a periodic signal with a period of 10 ns on clock.

Following the always block producing clock, another always block
generates a periodic signal on x with a period of 14 ns. The waveform
generated on x may or may not be able to test our machine for a correct
101 sequence. However, periods of clock and x can be changed to make
this happen. With the timing used here, the moore_detector output
becomes 1 at 55 ns, and every 70 ns from then on.

6.2.2 Simulation control

Another testbench for the circuit of Fig. 6.7 is shown in Fig. 6.9.
Although, Verilog constructs are used differently, data and clock applied
to MUT by this testbench are the same as those of Fig. 6.8. However, if
the simulation of the previous testbench is not interrupted, or stopped,
it runs forever. The testbench of Fig. 6.9 corrects this problem by adding
another initial block that stops the simulation at 189 ns.

Simulation control tasks are $stop and $finish. The first time the
flow of a procedural block reaches such a task, simulation stops or fin-
ishes. A stopped simulation can be resumed, but a finished one cannot.

Another testbench for the state machine of Fig. 6.7 is shown in Fig. 6.10.
This testbench combines the initial blocks of deactivating reset and sim-
ulation control into one initial block. The timing is adjusted to termi-
nate simulation at 189 ns, the same as that of Fig. 6.9.

Component Test and Verification 197

Figure 6.9 Testbench with $stop Simulation Control

module test_moore_detector;
reg x=0, reset=1, clock=0;
wire z;

moore_detector MUT (x, reset, clock, z);

initial #24 reset=1’b0;
always #5 clock=~clock;
always #7 x=~x;
initial #189 $stop;

endmodule

6.2.3 Limiting data sets

Instead of setting simulation time limit, a testbench can put a limit on
the number of data put on inputs of a MUT. This will also be able to stop
simulation from running indefinitely.

Figure 6.11 shows a testbench for our famous moore_detector MUT.
This testbench uses $random to generate random data on the x input
of the circuit. repeat statements in the initial blocks cause clock to
toggle 13 times every 5 ns, and x to receive random data 13 times every
7 ns. Instead of a deterministic set of data to guarantee a determinis-
tic test state, random data is used here. This strategy makes it easier

198 Chapter Six

Figure 6.10 Testbench with $finish Simulation Control

module test_moore_detector;
reg x=0, reset=1, clock=0;
wire z;

moore_detector MUT (x, reset, clock, z);

initial begin
#24 reset=1’b0;
#165 $finish;

end
always #5 clock=~clock;
always #7 x=~x;

endmodule

Figure 6.11 Testbench Using repeat to Limit Data Sets

module test_moore_detector;
reg x=0, reset=1, clock=0;
wire z;

moore_detector MUT (x, reset, clock, z);

initial #24 reset=1’b0;
initial repeat(13) #5 clock=~clock;
initial repeat(10) #7 x=$random;

endmodule

to generate data, but makes analysis of circuit output more difficult, due
to unpredictable inputs. In large circuits, random data is more useful
for data inputs than for control signals. The testbench of Fig. 6.11 stops
at 70 ns.

6.2.4 Applying synchronized data

The previous examples of testbenches for MUT used independent tim-
ings for the clock and data. Where several sets of data are to be applied,
synchronization of data with the system clock becomes difficult.
Furthermore, changing the clock frequency would require changing the
timing of all data inputs of the module being tested.

The testbench of this section (Fig. 6.12), that is written for the
moore_detector of Fig. 6.7, uses an event control statement to synchro-
nize data applied to x with the clock that is generated in the testbench.
The clock signal is generated in an initial statement using the repeat
construct. Another initial statement is used for generation of random
data on x. As shown in this initial statement, a forever loop that con-
tinuously repeats its statement is used here. This loop waits for the
positive edge of the clock, and 3 ns after the clock edge, a new random
data is generated for x. The stable data after the positive edge of the clock
will be used by moore_detector on the next leading edge of the clock. This
technique of data application guarantees that changing of data and
clock do not coincide.

The 3 ns delay used here makes it possible to use this same testbench
for simulating post-synthesis designs as well as behavioral descrip-
tions like that of Fig. 6.7. In a post-synthesis simulation, in which com-
ponent models with actual delay values are used, testbench delays

Component Test and Verification 199

Figure 6.12 Synchronizing Data with Clock

module test_moore_detector;
reg x=0, reset=1, clock=0;
wire z;

moore_detector MUT (x, reset, clock, z);

initial #24 reset=0;
initial repeat(13) #5 clock=~clock;
initial forever @(posedge clock) #3 x=$random;

endmodule

allow propagation of test signals to complete before application of other
test signals.

6.2.5 Synchronized display of results

The technique used in the previous section can be used for synchro-
nized observation of MUT outputs or internal signals.

Figure 6.13 shows another testbench for our moore_detector. In this
testbench, 1 ns after the positive edge of the clock, that is when the cir-
cuit output is supposed to have its new stable value, the z output is dis-
played using the $displayb task.

As in the testbench of Fig. 6.12, the delays used in this testbench
make it usable for moore_detector after it has been synthesized.

Using hierarchical naming, this testbench can be used for displaying
internal variables and signals of MUT. A testbench that is developed for
observing states of moore_detector is shown in Fig. 6.14. This testbench
uses $monitor to display the current reg of moore_detector of Fig. 6.7,
and an always block to display its output. The current state and z
output are displayed when they receive new values.

Except the last two procedural statements, (an initial and an always)
the rest of this testbench is the same as that of Fig. 6.13. The initial
statement containing $monitor is responsible for displaying MUT.cur-
rent, which is current of moore_detector addressed by its hierarchical
name. The initial statement starts the $monitor task in the back-
ground. Display occurs when this task is started and when an event
occurs on one of the variables of the task’s arguments. The %b and %t
format specifications cause the value of MUT.current to be displayed in
binary and that of $time to be displayed with its time unit.

200 Chapter Six

Figure 6.13 Testbench Displaying Output

module test_moore_detector;
reg x=0, reset=1, clock=0;
wire z;

moore_detector MUT (x, reset, clock, z);

initial #24 reset=0;
initial repeat(13) #5 clock=~clock;
initial forever @(posedge clock) #3 x=$random;
initial forever @(posedge clock) #1 $displayb(z);

endmodule

The last procedural statement of Fig. 6.14 is an always statement
that is sensitive to z. This statement encloses a $display task that dis-
plays values of z and the times that this output changes. Figure 6.15
shows the output generated by running the testbench of Fig. 6.14. The
result shown was obtained by repeating the clock toggling 19 times
instead of 13. This allowed more data to be applied to our MUT.

6.2.6 An interactive testbench

For the next series of testbenches we use a different state machine.
This is a 1101 Moore detector with start (start) and reset (rst) control
inputs. If start becomes 0 while searching for 1101, the machine resets
to its initial state. As shown in Fig. 6.16 this circuit has five states, and
its output becomes 1 when it reaches state e.

Component Test and Verification 201

Figure 6.14 Testbench Displays Design Variables when they change

module test_moore_detector;
reg x=0, reset=1, clock=0;
wire z;

moore_detector MUT (x, reset, clock, z);

initial #24 reset=0;
initial repeat(19) #5 clock=~clock;
initial forever @(posedge clock) #3 x=$random;
initial $monitor(“New state is %d and occurs at %t”,

MUT.current, $time);
always @(z) $display(“Output changes at %t to %b”,

$time, z);

endmodule

Figure 6.15 Test Results of Testbench of Fig. 6.14

New state is x and occurs at 0
Output changes at 50 to 0
New state is 0 and occurs at 50
New state is 1 and occurs at 250
New state is 2 and occurs at 850
Output changes at 950 to 1
New state is 3 and occurs at 950

The testbench for this state machine is an interactive one. In the
initial block shown in Fig. 6.17, the testbench communicates with MUT.
The x input and clock are generated by two always blocks. A continu-
ous periodic signal is generated on clock, and periodic random data is
assigned to x.

Initially, 0 and 1 are placed on reset and start to get the machine
started. Following this, a wait statement waits for z to become 1 as a
result of the MUT reacting to values of x and clock. After this happens,
start is set to 0 and back to 1 after 13 ns to restart the machine.
Following this first round of activity, a repeat statement repeats the
process of starting the machine and waiting for z to become 1 three
more times. At the end, after 50 ns the testbench stops the simulation
using a $stop task.

A portion of the waveform resulted by the testbench of Fig. 6.17 is
shown in Fig. 6.18. In addition to the ports of moore_detector of Fig. 6.16,
its current state is also displayed in this figure.

Another interactive testbench for moore_detector of Fig. 6.16 is shown
in Fig. 6.19. As in Fig. 6.17, this testbench applies random data to x and
periodic data to clock. The testbench uses hierarchical naming to access

202 Chapter Six

Figure 6.16 Moore Sequence Detector Detecting 1101

module moore_detector (input x, start, rst, clk,
output z);

parameter a=0, b=1, c=2, d=3, e=4;

reg [2:0] current;

always @(posedge clk)
if (rst) current <= a;
else if (~start) current <= a;

else case (current)
a : current <= x ? b : a ;
b : current <= x ? c : a ;
c : current <= x ? c : d ;
d : current <= x ? e : a ;
e : current <= x ? c : a ;
default: current <= a;

endcase

assign z = (current==e);

endmodule

the e parameter and current variable within MUT. The $display and
$strobe tasks, shown in Fig. 6.19, are used to observe the output of
moore_detector when the machine enters state e.

In the Output_Display always block when current becomes e (both cur-
rent and e are inside MUT), output z is displayed by $display and $strobe
tasks. While the $strobe task waits for all simulation events to complete
before displaying its parameters, the $display task displays its parame-
ters as soon as the program flow reaches it. Since we are not delaying
the flow of this always block after detection of state e, the $display task

Component Test and Verification 203

Figure 6.17 An Interactive Testbench

module test_moore_detector;
reg x=0, start, reset=1, clock=0;
wire z;

moore_detector MUT (x, start, reset, clock, z);

initial begin
#24 reset=1’b0; start=1’b1;
wait(z==1’b1);
#11 start=1’b0;
#13 start=1’b1;
repeat(3) begin

#11 start=1’b0;
#13 start=1’b1;
wait(z==1’b1);

end
#50 $stop;

end
always #5 clock=~clock;
always #7 x=$random;

endmodule

Figure 6.18 Waveform Resulted by the Interactive Testbench

displays the old value of z. On the other hand, after e is detected, a sim-
ulation cycle later, z becomes 1 and $strobe displays this output correctly.

6.2.7 Random time intervals

We have shown how $random can be used for generation of random
data. The testbench we are discussing in this section uses random wait
times for assigning values to x.

Figure 6.20 shows a testbench for the 1101 sequence detector that uses
$random for its delay control. As shown, the running initial state-
ment applies appropriate values to reset and start for the system to
start its search for the 1101 sequence. In this procedural block non-
blocking assignments cause intra-assignment delay values to be
regarded as absolute timing values.

After putting the state machine in the running state, the testbench
waits for 13 complete clock pulses before it de-asserts the start input and
finishes the simulation. As shown, an always block concurrent with the
running block continuously generates clock pulses of 5 ns duration. Also
concurrent with these blocks is another always block that generates
random data on t, and uses t to delay assignment of random values to x.

204 Chapter Six

Figure 6.19 Interactive Testbench Using Display Tasks

module test_moore_detector;
reg x=0, start, reset=1, clock=0;
wire z;

moore_detector MUT (x, start, reset, clock, z);

initial begin
#24 reset=1’b0; start=1’b1;

end
always begin : Output_Display

wait (MUT.current == MUT.e);
$display (“$display task shows: The output is %b “,

z);
$strobe (“$strobe task shows: The output is %b “, z);
#2 $stop;

end
always #5 clock=~clock;
always #7 x=$random;

endmodule

This block generates data on the x input for as long as the $finish state-
ment in the running block is not reached.

6.2.8 Buffered data application

None of the testbenches discussed so for applied a given set of test data
to the circuit input(s). The testbench we are discussing here uses a
buffer to hold data to be applied to the MUT data input. We take a pre-
defined series of bits and assign them to the x input of moore_detector.

As shown in Fig. 6.21, the 19-bit buffer is initialized with test data.
In an always statement each bit of this buffer is shifted out onto the x
input of moore_detector 1 ns after the positive edge of the clk clock. As
data is shifted, buffer is rotated in order for the applied buffered data
to be able to repeat. Start and stop control of the state machine are
done in another initial block in this testbench.

Component Test and Verification 205

Figure 6.20 Testbench using Random Time Intervals

module test_moore_detector;
reg x, start, reset, clock;
wire z;

reg [3:0] t;

moore_detector MUT (x, start, reset, clock, z);

initial begin:running
clock <= 1’b0; x <= 1’b0;
reset <= 1’b1; reset <= #7 1’b0;
start <= 1’b0; start <= #17 1’b1;
repeat (13) begin

@(posedge clock);
@(negedge clock);

end
start=1’b0;
#5;
$finish;

end
always #5 clock=~clock;
always begin

t = $random;
#(t) x=$random;

end
endmodule

With this testbench we are sure a correct sequence is applied to our
MUT. This way, we can more easily check for our expected results.
Generally, the more effort we put into generating our test data, the
easier it will be to analyze the output results. Random or pseudo-random
data generation is easy, but requires a significant time analyzing the
produced output.

6.3 Design Verification

The previous section discussed test techniques for testing a Verilog
design. We presented several methods of test data generation and test
application, and suggested ways of observing and inspecting test results.
Stimuli generation and response analysis require significant efforts on
the part of a hardware designer. Learning correct test techniques is
good, but automation of either of these procedures will be very useful
for a design engineer.

Formal verification is a way of automating design verification by elim-
inating testbenches and problems associated with their data generation
and response observation. In formal verification, a designer writes prop-
erties to check his or her design. Formal verification tools do not per-
form simulation, but come up with a Yes/No answer for every property
the design is being checked for. Although this method of design verifica-
tion helps discover many design errors, most designs still need testbench

206 Chapter Six

Figure 6.21 Testbench Applying Buffered Data

module test_moore_detector;
reg x=0, rst, start, clk=0;
wire z;
reg [18:0] buffer;

moore_detector MUT (x, start, rst, clk, z);

initial buffer = 19’b0001101101111001001;
initial begin

rst=1’b1; start=1’b0;
#29 rst=1’b0;
#29 start=1’b1;
#500 $stop;

end
always @(posedge clk) #1 {x, buffer} = {buffer, x};
always #5 clk = ~clk;

endmodule

development and simulation for validating that their Verilog code indeed
functions as expected. In other words, an all “Yes” answers to design
properties checked by formal verification tools is still not enough.

Instead of eliminating data generation and response observation (like
the formal verification tools), a step in the direction of automating design
validation is to reduce or eliminate efforts needed for analyzing output
responses. For this purpose assertion verification is used. Assertion ver-
ification adds monitors to a design to improve its observability. While
the design is being simulated with its testbench data, assertion moni-
tors that represent certain design properties continuously check for cor-
rect design behavior by validating these properties. If the simulation
data leads into conditions that indicate to an assertion monitor that the
design is misbehaving, the monitor is said to fire to alert the designer
of the problem.

As mentioned, we still need to develop a testbench and careful plan-
ning of test inputs for the design being tested is needed in assertion ver-
ification. But, in many cases, assertions automatically check to make
sure events that occur in the design are as expected. This significantly
reduces the need for processing long output lists or waveforms.

6.4 Assertion Verification

Unlike simulation that a testbench or a human has to interpret the
results, in assertion verification, in-code monitors take the responsibil-
ity of issuing a message if something happens that is not expected. In
Verilog, these monitors are modules, and they are instantiated in a
design to check for certain design properties. Instantiating an assertion
module is not to be regarded as instantiation of a hardware module.
Instead, this kind of instantiation is more like an always-active proce-
dure that continuously checks for events in the design module.

The present set of assertion monitors are available in a library that
is referred to as open verification library (OVL). Designers can develop
their own set of assertions, and use them in their designs. The existing
monitors check for values of signals, relation of several signals with
each other, sequence of events, and expected patterns on vectors or
groups of signals. For using assertions, a designer compiles OVL and his
or her own assertion library into a simulation library and makes this
library available to designs being verified. When a design is developed,
assertions are placed at key points in the design to check for key func-
tionalities. When the design is being simulated as a stand-alone com-
ponent, or in a hierarchy of a larger design, the monitors check signals
for their expected values. If a signal does not have a value expected by
a monitor, the assertion monitor displays a message and the time that
the discrepancy (violation of the property) has occurred. Usually, such
messages appear in the simulation report area, transcript, or console.

Component Test and Verification 207

6.4.1 Assertion verification benefits

Ways in which placement of assertion monitors in a design are helpful
are discussed here.

Designer discipline. When a designer places an assertion in a design,
he or she is disciplining him/herself to look into the design more care-
fully and extract properties.

Observability. Assertions add monitoring points to a design that make
it more observable.

Formal verification ready. Assertions correspond to properties that are
used in formal verification tools. Having inserted assertion monitors to
a design, readies it for verification by a formal verification tool.

Executable comments. Assertion monitors can be regarded as comments
that explain some features or behavior of a design. These comments pro-
duce messages when the behavior they are explaining is violated.

Self-contained designs. A design with assertion monitors has the design
description and its test procedure all in one Verilog module.

6.4.2 Open Verification Library

OVL is available from Accellera, and other EDA organizations. The
Language Reference Manual (LRM), user’s manual, and Verilog and
VHDL code of the library are also available from these organizations.
The list of the presently available assertions is shown in Fig. 6.22, and
Appendix E has their complete description and their parameters.

208 Chapter Six

assert_always assert_always_on_edge
assert_change assert_cycle_sequence
assert_decrement assert_delta
assert_even_parity assert_fifo_index
assert_frame assert_handshake
assert_implication assert_increment
assert_never assert_never_at_x_or_z
assert_next assert_no_overflow
assert_no_transition assert_no_underflow
assert_odd_parity assert_one_cold
assert_one_hot assert_proposition
assert_quiescent_state assert_range
assert_time assert_transition
assert_unchange assert_width
assert_win_change assert_win_unchange
assert_window assert_zero_one_hot

Figure 6.22 Assertions

An assertion is placed in code like a module instantiation. As shown
in Fig. 6.23, assertion module name comes first. This is followed by
static_parameters like vector size and options. Following this, Verilog
module instantiation requires an instance_name for which any unique
name is allowed. The last part of an assertion monitor includes refer-
ence and monitor signals, and other dynamic arguments. Dynamic
arguments are module ports and are also referred to as assertion ports.

Typical static parameters are severity of failure, vector size, number of
clocks, time frame specification (in terms of clock cycles), and the displayed
failure message. Reference clock, starting signal, reset signal, and the test
expression are some of typical dynamic arguments for assertion monitors.
The details of parameters and arguments of OVL assertion monitors are
discussed in Appendix E. Examples of some OVL assertion monitors and
their application are presented in the next section.

6.4.3 Using assertion monitors

This section shows several examples of using assertion monitors. Like
the section on testbenches, we show Verilog design examples and their
testing procedures. With assertion monitors, testing procedures include
insertion of assertion monitors.

6.4.3.1 assert_always. The general format for assert_always assertion
monitor is:

assert_always
#(severity_level, property_type,

msg, coverage_level)
instance_name (clk, reset_n, test_expr)

This assertion continuously checks its test_expr to make sure it is always
true on the edge of the specified clock (clk). If the test expression fails,
the assertion fires and its corresponding message (msg) is displayed.

As an example consider the binary coded decimal (BCD) counter of
Fig. 6.24. This counter counts between 0 and 9. The assertion monitor
shown here uses severity_level 1 to issue an error and continue simula-
tion if assertion is fired. The reader is encouraged to refer to Appendix E
for a detailed description of this assertion.

Component Test and Verification 209

assert_name
 #(static_parameters)

instance_name
 (dynamic_arguments);

Figure 6.23 Assertion Module Instantiation

As shown in the dynamic arguments of the invocation of assert_always
in Fig 6.24, the test expression is (cnt >= 0) && (cnt <= 9), and it is being
monitored on the rising edge of the clock (clk). The monitor checks that
on every rising edge of clk, cnt must be between 0 and 9. The second
dynamic argument (1’b1) indicates that the assertion is to be monitored
at all times.

A testbench for the BCD counter is shown in Fig. 6.25. Note that even
though checking simulation results is done in a semi-automatic fashion,
test data generation is still done manually by the designer. Proper ver-
ification of the design depends on development and insertion of good
monitors and quality of test data.

210 Chapter Six

Figure 6.24 BCD with assert_always

module BCD_Counter (input rst, clk, output reg [3:0] cnt);

always @(posedge clk) begin
if (rst || cnt >= 10) cnt = 0;
else cnt = cnt + 1;

end

assert_always #(1, 0, “Err: Non BCD Count”, 0)
AA1 (clk, 1’b1, (cnt >= 0) && (cnt <= 9));

endmodule

Figure 6.25 BCD Counter Testbench

module BCD_Counter_Tester;
reg r, c;
wire [3:0] count;

BCD_Counter UUT (r, c, count);

initial begin
r = 0; c = 0;

end
initial repeat (200) #17 c= ~c;
initial repeat (03) #807 r= ~r;

endmodule

6.4.3.2 assert_change. The assert_change monitor verifies that
within a given number of clocks after the start event, the test expres-
sion changes. This assertion uses the format shown below.

assert_change
#(severity_level, width, num_cks,

action_on_new_start, property_type,
msg, coverage_level)

instance_name (clk, reset_n, start_event, test_expr)

As an example, see the Walking_One module of Fig. 6.26. This is a shift
register that walks a 1 with every clock. A 1 is loaded into the left-most
bit of the register with the rst reset signal. The assert_change moni-
tor is discussed below, and the other assertion shown in this figure will
be described later.

Parameters of the ssert_change monitor used in this figure specify 1
for the length of the test expression and 7 for the number of clocks that
change is to occur. The arguments of this monitor specify the falling edge
of the clock (~clk), rst value of 0 for the activity period, and rst becoming
0 for the start of the count (start_event). As shown, the test expression
(test_expr) is wo. The parameters and arguments specified as such, check
that from the time that rst becomes 0 (i.e., rst == 0) and while it remains
0 (i.e., ~rst), it takes at most 7 negative clock edges for wo[0] to change.

Figure 6.27 shows the testbench for the Walking_One module. Note here
again, that it is the responsibility of the testbench developer to make sure
enough data is applied to cause design errors to trigger assertion monitors.

Figure 6.28 shows test results of the Walking_One module. The last
eight waveforms shown are signals driven by to wo[7] to wo[0], respec-
tively. When rst becomes 1, the falling edge of the clock puts a 1 into

Component Test and Verification 211

Figure 6.26 Walking One Circuit with Assertions

module Walking_One (input rst, clk, output reg [7:0] wo);
always @(negedge clk) begin

if (rst) wo <= 8’b10000000;
else wo <= {wo[0], wo[7:1]};

end

assert_change #(1, 1, 7, 0, 0, “Err: Bit 0 is not changing”, 0)
AC1 (~clk, ~rst, (rst==0), wo[0]);

assert_one_hot #(1, 8, 0, “Err: Multiple active bits”, 0)
AOH (~clk, ~rst, wo);

endmodule

wo[7]. When rst becomes 0, this 1 starts walking, and it takes 7 clock edges
for this 1 to walk to bit 0 of wo. The assert_change monitor verifies this.

6.4.3.3 assert_one_hot. The assert_one_hot assertion monitor checks
that while the monitor is active, only one bit of its n-bit test expression
is 1. Syntax, parameters, and arguments of this monitor are as shown
below.

assert_one_hot
#(severity_level, width, property_type,

msg, coverage_level)
instance_name (clk, reset_n, test_expr)

The Walking_One module of Fig. 6.26 invokes an assert_one_hot
monitor. The test expression is wo and its width is 8, as specified in the

212 Chapter Six

Figure 6.27 Walking_One Testbench

module Walking_One_Tester ();
reg rst=0, clk=0;
wire [7:0] walking;

Walking_One MUT (rst, clk, walking);

initial repeat (223) #7 clk= ~clk;
initial repeat (15) #109 rst= ~rst;

endmodule

Figure 6.28 Walking-One Test Results

assertion’s parameter list. The ~rst argument of this assertion makes
the checking active only when rst is 0.

As another example of an assert_one_hot invocation, consider the
Gray code counter of Fig. 6.29. The mem.dat file that contains consecutive
Gray code numbers is read into mem, and with each clock, the next Gray
count is looked up from mem.

In order to check for the correct Gray code sequencing, we have used some
auxiliary logic to prepare the test expression for the assert_one_hot asser-
tion. The auxiliary logic, shown at the end of the Verilog module of Fig. 6.29,
holds the old count of the counter in the declared old reg. The test expres-
sion of the assert_one_hot assertion monitor becomes the exclusive-or of
the old (old) and the present count (q). Since consecutive Gray code num-
bers are only different in one bit, their XOR must be one-hot.

6.4.3.4 assert_cycle_sequence. The assert_cycle_sequence shown
below is a very useful assertion for verifying state machines.

Component Test and Verification 213

Figure 6.29 Gray Code Counter

module gray_counter (input [3:0] d_in, input clk, rst, ld,
output reg [3:0] q);

reg [3:0] mem[0:15];
reg [3:0] im_q;
initial $readmemb(“mem.dat”, mem);

always @(d_in or ld or q) begin: combinational
if(ld)

im_q = d_in;
else

im_q = mem[q];
end

always @(posedge clk) begin: register
if(rst)

q <= 4’b0000;
else

q <= im_q;
end

reg [3:0] old; always @(posedge clk) old <= q;
assert_one_hot #(1, 4, 0, “Err: Not Gray”, 0)

AOH (~clk, ~rst, (old ^ q));
endmodule

assert_cycle_sequence
#(severity_level, num_cks, necessary_condition,

property_type,
msg, coverage_level)

instance_name (clk, reset_n, event_sequence)

This assertion checks for a sequence of events in a given number of
clocks. As with other assertion monitors, this checker has an enabling
input that is usually driven by the inactive level of a circuit’s reset
input.

We use the state machine of Fig. 6.30 to demonstrate the use of this
assertion monitor. As shown, after the reset state, i.e., a, the machine
searches for 110. When received, the next two clocks take the machine
back to state a, while transiting through state e. In state e, the z output
of the circuit becomes 1.

The Verilog code corresponding to the state machine of Fig. 6.30 is
shown in Fig. 6.31. This code also includes assertion monitors for its test-
ing. The assert_cycle_sequence monitor shown in this code is setup
to check if the machine reaches states d and then state e, then the next
clock will move the machine into state a.

This transition path is highlighted in the state diagram of Fig. 6.30
and is verified by the timing diagram of Fig. 6.32, which shows that if
the machine enters state 3, then its next state is 4 and then state 0 is
entered. As the Verilog code of this circuit shows states 3, 4, and 0 cor-
respond to d, e, and a respectively.

As shown in the Verilog code of the Sequencing_Machine, the second
parameter of assert_cycle_sequence is 3, which corresponds to the
number of states in sequence. The third parameter is 0 which configures

214 Chapter Six

b=1
0

d=3
0

c=2
0

a=0
0

0

1 0

1

0

1

01

e=4
1

1

0

Figure 6.30 A Sequencing State
Machine

this assertion monitor for checking that the last state of the sequence
is reached if the previous states are reached in the specified sequence.
If a value of 1 were used for this parameter, this assertion monitor
would be configured for checking the sequencing of all remaining states
if the first state were reached.

Component Test and Verification 215

Figure 6.31 Verilog Code of Sequencing_Machine

module Sequencing_Machine (input x, start, rst, clk,
output z);

parameter a=0, b=1, c=2, d=3, e=4;

reg [2:0] current;

always @(posedge clk)
if (rst) current <= a;
else if (~start) current <= a;

else case (current)
a : current <= x ? b : a ;
b : current <= x ? c : a ;
c : current <= x ? c : d ;
d : current <= e ;
e : current <= a ;
default: current <= a;

endcase
assign z = (current==e);

assert_cycle_sequence
#(1, 3, 0, 0, “Err: State sequence not followed”, 0)
ACS (clk, ~rst, {(current==d), (current==e),

(current==a)});

assert_next #(1, 2, 1, 0, 0, “Err: Output state not
reached”, 0)

AN1 (clk, ~rst, (current==c && x==0), (z==1));

endmodule

Figure 6.32 Sequencing_Machine State Transitions

The arguments of assert_cycle_sequence indicate monitoring on
the rising edge of the clock while rst is 0. The sequence of states to
verify are concatenated to form the third argument of this assertion
monitor. This argument is referred to as the event sequence of the
assertion.

6.4.3.5 assert_next. The assert_next assertion uses the syntax shown
below, and verifies that starting and an ending events occur with a spec-
ified number of clocks in between.

assert_next
#(severity_level, num_cks, check_overlapping,

check_missing_start, property_type,
msg, coverage_level)

instance_name (clk, reset_n, start_event, test_expr)

We can use this assertion monitor to verify traveling time of a walk-
ing 1 from one bit position of the Walking_One module to another bit
position. Another example use of this assertion monitor is shown in the
Verilog code of Sequencing_Machine of Fig. 6.31. In this design we are
verifying that there are two clock cycles between the time that current
becomes c while x is 0, and the time that z becomes 1. The start expres-
sion is (current == c && x == 0) and the test expression is (z == 1). The
second parameter of this assertion (num_cks) specifies the number of
clock cycles between the events.

6.4.4 Assertion templates

In the previous section we discussed the use of assertion monitors and
showed several assertions and related examples. The examples con-
centrated on common usage of these assertions. In this section we focus
on hardware features designers may need to verify, and show how asser-
tions can be used for their verification.

6.4.4.1 Reset sequence. Often controllers have a resetting sequence
that with certain sequence of inputs, the machine ends up in a certain
state regardless of what state it starts from. For example, in the
Sequencing_Machine of Fig. 6.30, if x remains 0 for three clock cycles,
the machine will always go to state a. Verifying this resetting sequence
can be done by the assertion shown in Fig. 6.33.

Assertion is done by assert_cycle_sequence. This assertion verifies
that if in three consecutive clocks, x is 0, in the fourth clock the current
state of the machine becomes a. Note that this assertion does not make
any assumption as to the starting state of the machine.

216 Chapter Six

6.4.4.2 Initial resetting. For verification of many sequential circuits, it
becomes necessary to check for resetting the circuit using a synchronous
or asynchronous reset input. For an example for this situation, consider the
Mealy machine of Fig. 6.34. The assert_next assertion monitor is always
active because we are passing a 1’b1 value to its enabling argument. The
assertion checks if rst is 1, then the next current state becomes reset. For
the description shown in Fig. 6.34, the assertion passes and never fires.

6.4.4.3 Implication. A useful assertion for checking expected events,
or events implied by other events, is the assert_implication assertion.
As shown below, this assertion has an expression for antecedent and one
for consequence.

assert_implication
#(severity_level, properety_type,

msg, coverage_level)
instance_name (clk, reset_n,

antecedent_expr, consequence_expr)

The assert_implication assertion monitor checks on the specified clock
edge for the antecedent expression (antecedent_expr) to be true. If it is,
then it checks for the consequence expression (consequence_expr) to be
true. If so, it will stay quiet, otherwise it will fire.

An example for assert_implication is shown in Fig. 6.35. This asser-
tion is written for the Mealy machine of Fig. 6.34. The assertion checks
the output value in the got10 state while x is 1. It reads as: it is implied
that z is 1 when current is got10 and x is 1.

The assertion shown in this example is always active because of the
1’b1 argument. On the rising edge of the clock, if current is found to be
got10 and x is 1, it expects the z output to be 1 on the same clock edge;
otherwise the message of its msg parameter will be displayed.

Component Test and Verification 217

Figure 6.33 Assertion Reset Sequence

module Sequencing_Machine (input x, start, rst, clk, output z);
parameter a=0, b=1, c=2, d=3, e=4;
// . . .

assert_cycle_sequence
#(1, 4, 0, 0, “Err: Resetting does not occur”, 0)
ACS2 (clk, ~rst, {(x==0), (x==0), (x==0), (current==a)});
// . . .

endmodule

6.4.4.4 Valid states. In the sequential circuit testing it often becomes
necessary to check for the machine’s valid states and issue a warning if
the machine enters an invalid state. If the states of the machine being
tested are consecutive binary numbers, the assert_no_overflow asser-
tion monitor shown below can be used for this purpose.

assert_no_overflow
#(severity_level, width, min, max, property_type,

msg, coverage_level)
instance_name (clk, reset_n, test_expr)

Consider for example the Mealy machine of Fig. 6.34. This machine has
two state variables, allowing four states. Of the four possible states, it
is using only three, i.e., reset, got1, got10. The assertion shown in Fig. 6.36
fires if the Mealy machine ever enters the machine’s invalid state.

The assert_no_overflow assertion in Fig. 6.36 uses 1, 2, 0, and 2 for
its first four parameters. The second parameter (2) is the width of the

218 Chapter Six

Figure 6.34 Hard-Reset Assertion

module mealy_detector (input x, rst, clk, output z);
localparam [1:0]

reset = 0, // 0 = 0 0
got1 = 1, // 1 = 0 1
got10 = 2; // 2 = 1 0

reg [1:0] current;
always @(posedge clk) begin

if (rst) current <= reset;
else case (current)

reset: if(x==1’b1) current <= got1;
else current <= reset;

got1: if(x==1’b0) current <= got10;
else current <= got1;

got10: if(x==1’b1) current <= got1;
else current <= reset;

default: current <= reset;
endcase

end
assign z = (current==got10 && x==1’b1) ? 1’b1 : 1’b0;

assert_next
#(1, 1, 1, 0, 0, “Err: Machine does not reset
properly”, 0)

AN1 (clk, 1’b1, rst, (current==reset));

endmodule

vector being tested. The third and fourth parameters are the range of
values (min to max) the test expression can take. This assertion makes
sure current never exceeds 2.

We have shown several applications of assertion monitors. We have
kept this discussion simple and have only shown direct use of several
assertions. Combining several assertion monitors, and using auxiliary
logic to adapt assertions to a specific design, provide a very complete
design validation environment.

6.5 Text Based Testbenches

Verilog has an extensive set of tasks for reading and writing external files.
These tasks include tasks for opening and closing files, positioning a
pointer in a file, writing or appending a file, and reading files. Appendix
B has a complete list of these tasks and a brief description of each.

Instead of presenting our text-based testbenches in this chapter, we
postpone this topic until Chap. 8, where more complete systems are
discussed. In there, several large examples will be presented and their
corresponding testbenches are discussed. In all systems designed in

Component Test and Verification 219

Figure 6.35 Asserting Implication

module mealy_detector2 (input x, rst, clk, output z);
// . . .

assert_implication
#(1, 0, “Err: Output not asserted”, 0)

AI1 (clk, 1’b1, (current==got10 && x), (z==1));

// . . .
endmodule

Figure 6.36 Checking for Invalid States

module mealy_detector2 (input x, rst, clk, output z);
// . . .

assert_no_overflow #(1, 2, 0, 2, 0, “Err: Invalid state”, 0)
ANV1 (clk, 1’b1, current);

// . . .
endmodule

Chap. 8, we take advantage of external data files for reading test data,
and our design results are also written into external files.

6.6 Summary

This chapter discussed the use of Verilog constructs for developing test-
benches. In the first part of the chapter we focused on data generation
and response analysis by use of Verilog. In the second part, we showed
how assertion monitors could be used for reducing efforts needed for
response analysis of a unit-under-test. Developing good testbenches for
complex designs requires design observability given to designers by use
of assertions. Appendix E discusses assertion monitors that are dis-
tributed by Accellera at the time of writing of this book. At this time OVL
version 1.0 is released and updates will be available from Accellera.

Problems

6.1 Write an interactive testbench for the multiplier of Prob. 5.12. Your
testbench must be complete with clock and proper timing and multiplier
handshaking. Use the following interface for the multiplier,

6.2 Add a part to the testbench of Prob. 6.1 to calculate the expected result and
compare it with that of the multiplier result. Every time start becomes 1 pick
up the data that is being applied to the multiplier, perform the multiplication
by the * operator, wait for the multiplier to complete its multiplication, and then
compare the expected result with the multiplier result. If they are not the same
an error signal should be issued.

6.3 To the testbench of Prob. 6.2 add a part that will issue a display message
each time the error signal becomes 1.

6.4 Using assert_always assertion monitor in the testbench of Prob. 6.1,
continuously check the result every time done becomes 1. Display an error
message if the result is wrong.

6.5 Rewrite the assertion of the BCD counter of Fig. 6.24. Instead of
assert_always, use assert_no_overflow assertion monitor to check the BCD
counting.

220 Chapter Six

module mult (a, b, start, clk, r, done);
input [7:0] a, b;
input start, clk;
output [15:0] r;
output done;
. . .

endmodule

Suggested Reading

Accellera, Open Verification Library: Assertion Monitor Reference Manual, www.
accellera.org, v1.0, 2005.

Bening, L., and H.D. Foster, Principles of Verifiable RTL Design Second Edition–A
Functional Coding Style Supporting Verification Processes in Verilog, 2d ed. Springer,
Boston, 2001, ISBN: 0792373685.

Foster, H.D., A.C. Krolnik, and D.J. Lacey, Assertion-Based Design, 1st ed. Springer,
Boston, 2003, ISBN: 1402074980.

IEEE Std 1364-2001, IEEE Standard Verilog Language Reference Manual, SH94921-
TBR (print) SS94921-TBR (electronic), ISBN 0-7381-2827-9 (print and electronic),
2001.

Lam, W. K., Hardware Design Verification: Simulation and Formal Method-Based
Approaches, Prentice Hall PTR, New Jersey, 2005, ISBN: 0131433474.

Navabi, Z., Digital Design and Implementation with Field Programmable Devices, Kluwer
Academic Publishers, Boston, 2005, ISBN: 1-4020-8011-5.

Navabi, Z., Verilog Computer-Based Training Course, CBT CD with hardcopy User’s
manual, McGraw-Hill, New York, 2002, ISBN 0-07-137473-6.

Component Test and Verification 221

www.accellera.org
www.accellera.org

This page intentionally left blank

Chapter

7
Detailed Modeling

The previous chapters presented Verilog from a design point of view.
Except in a few cases, most of the constructs and styles of coding that
we discussed were synthesizable. Although describing hardware for syn-
thesis covers the majority of cases that a hardware description language
(HDL) like Verilog is used in industry, there are also cases that an exist-
ing hardware needs to be modeled. Take for example, developing com-
ponents of an application-specific integrated circuits (ASIC) library for
post-synthesis simulation, or modeling very large-scale integration
(VLSI) components to be used in a hierarchical multi-level design descrip-
tion. In such cases, there may be a need to go beyond gate level details
of a structure and develop models to exhibit timing signal strengths,
and signal values that are less abstract than just 0 and 1.

There are two facilities in Verilog for detailed modeling beyond what
we have already discussed: transistor (or switch) level modeling and
signal strengths. These facilities are independent, but can be combined
to facilitate modeling hardware for a very detailed simulation. This
chapter presents switch level modeling and signal strengths in Verilog.
We show simulation results that can be obtained by hardware models
that take advantage of such language facilities.

7.1 Switch Level Modeling

Usually, transistor level modeling is referred to modeling hardware
structures using transistor models with analog input and output signal
values. On the other hand, gate level modeling refers to modeling hard-
ware structures using gate models with digital input and output signal
values. Between these two modeling schemes is what is referred to as
switch level modeling. At this level, a hardware component is described

223

Copyright © 2006 by The McGraw-Hill Publishing Companies, Inc. Click here for terms of use.

at the transistor level, but transistors only exhibit digital behavior and
their input, and output signal values are only limited to digital values.
At the switch level, transistors behave as on-off switches. Verilog uses
a 4-value logic value system, so Verilog switch input and output signals
can take any of the four 0, 1, Z, and X logic values. Switch constructs,
their simulation behavior and simulation of hardware constructs based
on such switches will be discussed here.

7.1.1 Switch level primitives

Figure 7.1 shows Verilog switch and pull primitives. Switches are unidi-
rectional or bidirectional and resistive or nonresistive. For each group
we have those primitives that switch on with a positive gate (like an
NMOS transistor) and those that switch on with a negative gate (like
a PMOS transistor). Switching on means that logic values flow from
input of a transistor to its output. Switching off means that the output
of a transistor is at Z level regardless of its input value.

A unidirectional transistor passes its input value to its output when
it is switched on. A bidirectional transistor conducts both ways. A resis-
tive structure reduces the strength of its input logic when passing it to
its output. Strengths will be discussed in the next section. In addition
to switch level primitives, Fig. 7.1 lists pull-primitives that are used as
pull-up and pull-down resistors for tri-state outputs.

Figure 7.2 shows standard switches, pull primitives, and tri-state gates
that behave like nmos and pmos. Instantiations of these primitives and
their corresponding symbols are also shown. cmos is a unidirectional
transmission gate with a true and complemented control lines. nmos and
pmos are unidirectional pass gates representing NMOS and PMOS tran-
sistors respectively. Not shown in Fig. 7.2 are rcmos, rnmos, and rpmos
that are the resistive versions of cmos, nmos, and pmos. When such a

224 Chapter Seven

SWITCHES Unidirectional Bidirectional PULL-GATES

Standard
cmos
nmos
pmos

tran
tranif1
tranif0

pullup

Resistive
rcmos
rnmos
rpmos

rtran
rtranif1
rtranif0

pulldown

Figure 7.1 Switch Level Primitives

resistive switch conducts, the strength of its output signal is one or two
levels below that of its input signal.

Delay values for transition to 1, transition to 0, and transition to Z
can be specified in the # (to-1, to-0, to-Z) format for unidirectional
switches. Bidirectional tran switches shown in Fig. 7.1 are functionally
equivalent to unidirectional switches shown in the adjacent column of
this figure. The difference is that they have a control input and two inout
ports. When conducting, the two inout ports are connected and logic
values flow in both directions. Furthermore, bidirectional switches
cannot have delay values.

Figure 7.2 also shows instantiation of pullup and pulldown primi-
tives. As mentioned before, these primitives pull a Z value on a tri-state
gate output to a 1 and 0, respectively. Pull-gates cannot be given delay
values.

Using several examples, the following sections show how the primi-
tives discussed above can be used for modeling standard logic structures
such as logic gates and memory elements.

7.1.2 The basic switch

The behavior of the basic switch can be illustrated by simulating the
nmos circuit shown in Fig. 7.3.

Detailed Modeling 225

Figure 7.2 Switch Level Primitive Instantiations

nmos #(...) (w, i, c)

pmos #(...) (w, i, c)

w

c

w

i

c

w

i

i

cmos #(...) (w, i, c1, c2) c1 c2

tranif1 (io1, io2, c)

tranif0 (io1, io2, c)

io1

c

io2

io1

c

io1

io2

io2

tran (io1, io2)

bufif1 #(Ö) (w, i, c)

bufif0 #(Ö) (w, i, c)

c

c

i

i

w

w

pullup w

pulldown w

Figure 7.4 shows the Verilog code of the an_nmos module. As shown,
all three delay values that can be used with the nmos primitive are used
in this description.

The simulation of the module of Fig. 7.4 is shown in Fig. 7.5. Initially,
the undriven output of this structure is X. This continues for 5 ns until
the 0 on its b input (note that b is the Gate of the transistor) causes prop-
agation of a Z value to the y output. At time 15 ns the Source of the tran-
sistor (input a) changes to 1. This does not change the output of the
transistor since its Gate (input b) is still 0. However at time 30 ns when
b changes to 1, the 1 on the input a transfers to y after the specified 3 ns
delay. Other changes on y happen with a 4 ns and a 5 ns delay for its
changing to 0 and to Z respectively.

If fewer than three delay values are used when a unidirectional switch
is instantiated, the minimum of all specified delay values will be used
for the missing values.

7.1.3 CMOS gates

A 2-input NAND gate using NMOS and PMOS transistors is shown in
Fig. 7.6. The inputs of the pmos primitives are tied to Vdd to supply
logic 1 to the output, and the input of the lower nmos primitive is tied
to Gnd to supply logic 0 to the output. For unidirectional switches, the
switch input is the transistor Source, its output is the Drain, and the

226 Chapter Seven

a

b

y

an_nmos

Figure 7.3 Basic Switch Circuit

Figure 7.4 Verilog Code of a Basic Switch

`timescale 1ns/10ps
module an_nmos (input a, b, output y);

nmos #(3, 4, 5) (y, a, b);
endmodule

switch control input is the transistor Gate input. The input-output
arrangement of switches (shown in Fig. 7.6) are such that the input sides
of the nmos switches are on the Gnd side and the input sides of the
pmos switches are on the Vdd side. This arrangement is justified by
an actual transistor level circuit because the Source of an NMOS tran-
sistor feeds logic 0 to the output (discharging the output throught Gnd),
and the Source of a PMOS transistor feeds logic 1 to the output (charg-
ing it through Vdd) of a CMOS gate.

Figure 7.7 shows the Verilog code of the nand2_1d circuit. Net dec-
larations supply0 and supply1 declare Gnd and Vdd nets. The im1

Detailed Modeling 227

Figure 7.5 Simulation of the Basic Switch

nand2_1d

g3

g4

g1 g2
a

b

Vdd

Gnd

y

im1

Figure 7.6 Switch Level 2-input NAND Gate

wire connects output of g4 nmos to the input of g3. The output of the
circuit is driven simultaneously by outputs of g1, g2, and g3.

Figure 7.8 shows the simulation result of the NAND gate of Fig. 7.7.
The output y starts with X at time 0 and becomes 1 at 4 ns. This is due
to the 0 input values that make pmos switches conduct that cause the
flow of Vdd supply voltage through the pmos primitives to the output.
At time 20 ns when input a becomes 1, the pull-down path of the switch
level circuit starts conducting. After 3 ns delay, 0 from Gnd reaches
output y. However, because of slower pmos switches, the pull-up struc-
ture has not discontinued conducting, and continues doing so far another
1 ns after the pull-down is conducting. Therefore, for a period of 1 ns,
when both pull-up and pull-down structures are conducting, the gate
output becomes X. A similar situation happens when b changes to 0 at
time 30 ns. In this case, the pull-up structure conducts after 4 ns, but
two series pull-down transistors take a total of 6 ns to discontinue con-
ducting. The opposite of this last situation occurs at time 40 ns when b

228 Chapter Seven

Figure 7.7 CMOS 2-input NAND

`timescale 1ns/100ps

module nand2_1d (input a, b, output y);

supply0 Gnd;
supply1 Vdd;

wire im1;

pmos #(4) g1 (y, Vdd, a);
pmos #(4) g2 (y, Vdd, b);
nmos #(3) g3 (y, im1, a);
nmos #(3) g4 (im1, Gnd, b);

endmodule

Figure 7.8 NAND Gate Detailed Simulation

becomes 1. Because of delay differences in the pull-up and pull-down
paths, the y output becomes float (Z) for a period of 2 ns before it reaches
its stable value of 0 at time 46 ns.

The simulation report obtained from the switch level model of the
CMOS NAND gate includes far more details than simulating a 2-input
nand primitive. The price we are paying for this detailed simulation is
the simulation performance.

As another example of a CMOS gate structure, consider the 4-input
AND-OR-INVERT (AOI) gate of Fig. 7.9. A pull-down structure using

Detailed Modeling 229

a

b

aoi_3d

y

c

d

im3im2

Gnd

Vdd

im1

Figure 7.9 AOI Gate

NMOS transistor and its complementary pull-up structure with PMOS
transistors is shown here.

The Verilog code of Fig. 7.10 is the switch level model for this AOI gate.
As shown, three delay values are used for nmos and pmos primitives
of this model. These values are for to-1, to-0 and to-Z transitions, and
transitions of the switch outputs to the X value use the minimum of the
three delay values specified here.

Analysis of the timing of the output of this AOI gate is more complex
than that of the NAND gate of Fig. 7.7. This is partly due to the fact that
we are using three delay values for AOI switches. Another factor con-
tributing to the complexity of timing of this circuit is the existence of
many alternative paths with different propagation delay values. For cer-
tain input transitions, this AOI output goes through 3 to 4 intermedi-
ate values before it reaches its final logical 0 or 1 value.

7.1.4 Pass gate logic

The electronics of NMOS and PMOS transistors allows the use of simple
switch level structures to implement certain boolean functions.

7.1.4.1 2-To-1 Multiplexer. As an example of use of pass gates, consider
a 2-to-1 multiplexer that would require eight transistors if implemented

230 Chapter Seven

Figure 7.10 AOI Verilog Code

`timescale 1ns/100ps

module aoi_3d (input a, b, c, d, output y);

supply0 Gnd;
supply1 Vdd;

wire im1, im2, im3;

pmos #(3,5,7)
g1(im1, Vdd, a),
g2(im1, Vdd, b),
g3(y, im1, c),
g4(y, im1, d);

nmos #(2,4,6)
g5(y, im2, a),
g6(im2, Gnd, b),
g7(y, im3, c),
g8(im3, Gnd, d);

endmodule

as a CMOS structure with a pull-up and a pull-down (similar to the AOI
of Fig. 7.9). This circuit can be realized with only two transistors using
pass gates. Figure 7.11 shows such a multiplexer.

In this circuit, g1 or g2 conducts when s0 or s1 is 1, which allows i0
or i1 to propagate to y. Because of the transistor threshold values, and
their resistance, the y output is at a weaker logic level than if this struc-
ture was build as a CMOS complex gate. Verilog models this strength
reduction using its signal strength modeling that will be discussed in
the next section.

The Verilog code of the mux circuit of Fig. 7.11 is shown in Fig. 7.12.
Note the direction of unidirectional transistors, and note that output y
is driven by the outputs of both switches. Output y is declared as a net
of wire type. Therefore, conflicting values on transistor outputs will be
handled by the wire resolution function. If both g1 and g2 conduct and
i0 and i1 are 1 and 0 respectively, the y output becomes X.

Detailed Modeling 231

g1i0

i1

mux

ys0

s1

g2

Figure 7.11 2-to-1 Multiplexer
Using Pass Gates

Figure 7.12 Switch Level 2-to-1 Multiplexer

`timescale 1ns/100ps

module mux (input i0, i1, s0, s1, output y);
wire y;
nmos #(4)

g1(y, i0, s0),
g2(y, i1, s1);

endmodule

Declaring y as a net of type wand or wor would generate different
results than the wire type when transistor outputs have conflicting
values. For example, if s0 and s1 are both 1, and i0 and i1 are 1 and 0
respectively, y type wand becomes 0 and y type wor becomes 1.

7.1.4.2 4-Bit shifter. Another example of a pass-gate structure is the
shifter shown in Fig. 7.13. This circuit uses four 2-to-1 switch level mul-
tiplexers and an inverter for decoding the ls input. When ls is 1, left shift
takes place, otherwise, the 4-bit input is directly connected to the shifter
output.

The shifter Verilog code of Fig. 7.14 uses eight nmos primitives with
a 3 ns delay value, and pmos and nmos with 5 ns delay values for the
inverter. Since the net type for the outputs is not specified, wire is
assumed. This makes each bit of this shifter behave like the multiplexer
of Fig. 7.12.

The timing diagram of Fig. 7.15 shows the simulation run of the
shifter. Notice that when a data input (i3, i2, i1, i0) changes (e.g., i1
become 0 at 40 ns), its effect appears on the corresponding output after
3 ns. On the other hand, when ls changes, the outputs change after
going through a transitional value of X or Z for 5 ns. This is because of
the inverter delay of 5 ns. When ls become 1 (e.g., time 20 ns), both
switches driving a changing output conduct, and cause a 5 ns period of
X on that output. The opposite of this happens when ls becomes 0 (see
time 60 ns). In this case, all transistors that drive shifter outputs go into
the off mode for a period of 5 ns, causing y3, y2, y1, and y0 to become Z
for 5 nanoseconds.

232 Chapter Seven

shifter i0i1i2i3

ls

sin

y0y1y2y3

ls_b

Vdd

Gnd

Figure 7.13 Switch Level Shifter

7.1.4.3 Barrel shifter. Figure 7.16 shows the design of a 4-bit barrel
shifter. The i ports are the data inputs and y ports are the outputs.
Data inputs appear on outputs 0, 1, 2, or 3 positions shifted to the right.
Shift positions are determined by l0, l1, l2, or l3. If l0 is 1, no shifting
is done. If l1 is 1, y3, y2, y1, and y0 receive i0, i3, i2, and i1 respectively.

Figure 7.17 shows the Verilog code of the barrel shifter. This code
uses nested generate loops and if statements for wiring the two-
dimensional switch array of Fig. 7.16. This Verilog code uses SIZE for
the size of the barrel shifter.

Detailed Modeling 233

Figure 7.14 Shifter Verilog Code

`timescale 1ns/100ps

module shifter (input i3, i2, i1, i0, sin, ls,
output y3, y2, y1, y0);

supply1 Vdd;
supply0 Gnd;

nmos #(3)
(y0, sin, ls),
(y0, i0 , ls_b),
(y1, i0, ls),
(y1, i1 , ls_b),
(y2, i1, ls),
(y2, i2 , ls_b),
(y3, i2, ls),
(y3, i3 , ls_b);

nmos #(5) (ls_b, Gnd, ls);
pmos #(5) (ls_b, Vdd, ls);

endmodule

Figure 7.15 Shifter Simulation Run

7.1.5 Switch level memory elements

Static memory circuits can be built using standard gate level structures
as discussed in Chap. 5. Switch level versions of these structures can be
built using CMOS gates described in Sec. 7.1.3. Describing dynamic and
pseudo-static memory elements require utilization of gate capacitances

234 Chapter Seven

i1

barrel_shifter y3 y2 y1 y0

i0

i2

i3

l1 l2 l3 l0

Figure 7.16 Switch Level Barrel Shifter

Figure 7.17 Barrel Shifter Verilog Code

`timescale 1ns/100ps

module barrel_shifter (i, l, y);
parameter SIZE = 4;
input [SIZE-1:0] i, l;
output [SIZE-1:0] y;
genvar a, b;

generate for (a=0; a<SIZE; a=a+1) begin:row
for (b=0; b<SIZE; b=b+1) begin:col

if (b>=a)
nmos #2 (y[a], i[b], l[b-a]);

else
nmos #2 (y[a], i[b], l[SIZE-(a-b)]);

end
end endgenerate

endmodule

and use of bidirectional or unidirectional switches. This section shows sev-
eral switch level memory elements that use gate capacitors for storage.

7.1.5.1 Half register. A simple half-register can be built using a pass
transistor or a CMOS transmission gate to charge gate capacitance of
NMOS and PMOS transistors. Figure 7.18 shows half_reg that uses a
CMOS transmission gate and an inverter. When c becomes active, the
current from d charges cap. This charge is complemented by the NMOS-
PMOS inverter structure and appears on q_bar. The q_bar output holds
its value for as long as cap holds its charge. When cap loses its charge,
q_bar will go into an unknown state. Therefore it is required that this
structure is clocked frequently to refresh its charge holding capacitor.
The Verilog code of this structure that uses two nmos and two pmos
primitives are shown in Fig. 7.19. Modeling the gate capacitances is done

Detailed Modeling 235

d

half_reg

c

q_barcap

~c

Vdd

Gnd

Figure 7.18 Switch Level Half-Register

Figure 7.19 Half Register Verilog Code

`timescale 1ns/100ps

module half_reg (input d, c, output q_bar);

supply0 Gnd;
supply1 Vdd;

trireg #(0, 0, 50) cap;

cmos #(0,0,5) (cap, d, c, ~c);
nmos #(3) (q_bar, Gnd, cap);
pmos #(4) (q_bar, Vdd, cap);

endmodule

by declaring cap as a net of trireg type. This net has 50 ns of charge
holding capacity. As shown, cap is used for the output of cmos and
input of the output inverter. Without the trireg declaration, this struc-
ture would not have any storage capability and would only function as
a combinational logic.

The timing diagram of Fig. 7.20 demonstrates the storage capability
of the half_reg module. While c is 1, the complement of d appears on
q_bar with delay values that are associated with cmos, nmos, and
pmos primitives. When c becomes 0, q_bar holds its last value for the
specified trireg value plus switch delays as specified in this module. As
shown, q_bar becomes X, 58 ns after c becomes 0. It is expected that a
new clock pulse arrives before q_bar loses its retained data.

7.1.5.2 Pseudo-static d-latch. Switch level structure of a pseudo-static
D-latch is shown in Fig. 7.21. When c is 1, data on d passes through the
input CMOS transmission gate, and after passing through two invert-
ers it reaches the q output.

236 Chapter Seven

Figure 7.20 Half-Register Simulation Run

d

d_latch

c

q

im1

~c

c
~c

q_not

Figure 7.21 Pseudo-Static Transparent Latch

When c becomes 0, the d input is disconnected from q, and instead the
CMOS gate on the feedback path feeds the current q back to itself
through the inverter pair.

The Verilog code of Fig. 7.22 corresponds to the transparent latch of
Fig. 7.21. As shown here, we do not need a trireg node, because clocking
and refreshing are complementary, and im1 is either driven by d or q. Note
that im1 is the node that this structure uses for holding its state.

7.1.5.3 Cross-couple SRAM memory. A six-transistor static memory ele-
ment is shown in Fig. 7.23. When wr becomes 1, data from d is stored in
the cross-couple inverters. When rd becomes 1, the complement of this
data appears on q_bar. When writing into the memory cell, the strength
of the output of the nmos primitive that drives d into im1 must be higher
than the strength of the not primitive driving this node. This requires

Detailed Modeling 237

Figure 7.22 Pseudo-Static Latch Verilog Code

`timescale 1ns/100ps

module d_latch (input d, c, output q);

cmos #(0,0,3)
(im1, d, c, ~c),
(im1, q, ~c, c);

not #(5)
(q_not, im1),
(q, q_not);

endmodule

d

cross_couple

wr

q_notim1 q_bar

rd

Figure 7.23 Static Memory with Cross-Couple Inverters

a special electronics for “over driving” the inverter output. Figure 7.24
shows the Verilog code of the SRAM cell. Cell delays are described by
associating delay values with wire declaration of internal nodes of the
cell. The memory cell uses two nmos primitives for the read and write
hardware, and two not primitives for the cross-couple structure.

In Verilog, the default strength for the outputs of primitives used
here is strong. If d is driven by a strong logic, the write nmos must
be able to over-drive the existing cell value. Therefore, we have used pull
strength (pull1, pull0) for the inverter driving the same node (im1) as
this nmos.

Figure 7.25 shows the simulation run of the cross_couple module. As
the timing diagram shows, wr becomes 1 at 20 ns. This causes the 0 on
d to be written into the latch internal node, im1, and its complement to
go into q_not. While this is happening, the q_bar output of this structure
remains at Z, and does not change until a read is issued. When read is
issued (rd becomes 1 at 80 ns) the q_bar output becomes 1 which is the

238 Chapter Seven

Figure 7.24 Verilog Code for SRAM Cell

`timescale 1ns/100ps

module cross_couple (input d, wr, rd, output q_bar);

wire #(5) q_not;
wire #(3) im1, q_bar;

nmos
(im1, d, wr),
(q_bar, q_not, rd);

not (q_not, im1);
not (pull0, pull1) (im1, q_not);

endmodule

Figure 7.25 Simulating the SRAM Cell

complement of the input data put into this latch at time 20 ns. The
timing diagram of Fig. 7.25 shows another write and read cycle; writing
a 1 and reading its complement are demonstrated at 140 ns and 200 ns
respectively.

7.1.5.4 Dynamic cell. Figure 7.26 shows a one-transistor dynamic RAM
cell. The cap capacitance is where this cell stores its data. When rd_wr
is 0, the cell data remains in cap. Reading is done by setting rd_wr to 1
and sensing io. Writing is done by setting rd_wr to 1 and driving io
with input data.

Figure 7.27 shows the Verilog code for this dynamic memory cell. The
io signal is declared as inout and issued for input and output of this cell.
The charge holding capacitance is modeled by declaring cap as a trireg
net. The bidirectional transistor is modeled by the tranif1 primitive.
The first two ports of this bidirectional primitive are its inout ports, and
the third is its control.

Detailed Modeling 239

rd_wr

dynamic_cell

cap

io

Figure 7.26 One-Transistor Dyna-
mic Cell

Figure 7.27 Dynamic Memory Cell

`timescale 1ns/100ps

module dynamic_cell (inout io, input rd_wr);

trireg #(0, 0, 50) cap;

tranif1 #(5) (cap, io, rd_wr);

endmodule

When writing into this cell, rd_wr must be driven with a 1, and input
data 0 or 1 must be placed on io. When reading this cell, rd_wr must be
1, and io must externally be set to Z. In this case, the cell data (0 or 1)
will override the tri-state io value.

7.1.5.5 Master-slave flip-flop. Using two half_reg modules (Fig. 7.18) and
an inverter, builds a master-slave D-type flip-flop (Fig. 7.28). When c is 1,
complement of d goes into im1, and when c becomes 0 the complement of
im1 appears on q. With a slight timing difference, the functionality of this
circuit is like that of a falling edge trigger flip-flop.

The simulation of master_slave_dff module of Fig. 7.29 is shown in
Fig. 7.30. As shown, the q output takes the value of d with a slight delay
after the negative edge of the clock. This diagram also shows a tempo-
rary transitional q value of Z at 119 ns. The changing of q goes through
Z or X transitional value, because of the difference in delay values of the
nmos and pmos transistors at the output of the slave half-register (see
Fig. 7.19, nmos uses 3 ns, pmos uses 4 ns).

240 Chapter Seven

d

master_slave_dff

im1half_reg

c

q

c_not

half_reg

Figure 7.28 Master Slave Flip-Flop

Figure 7.29 Master-Slave Verilog Code

`timescale 1ns/100ps

module master_slave_dff (input d, c, output q);

half_reg master (d, c, im1);
half_reg slave (im1, c_not, q);
not (c_not, c);

endmodule

Another behavior of this module, which is also contributed to the way
half-registers behave, is the fact that if the flip-flop is not clocked for a
relatively long time, it loses its data. Note in Fig. 7.30 that clock c stops
ticking at 200 ns. After 58 ns, the flip-flop output goes into unknown X
state. The 58 ns discharge time is also shown in the simulation of the
half-register in Fig. 7.20.

Figure 7.31 shows a 4-bit register that uses four instances of the
master-slave flip-flop of Fig. 7.29. As in the case of the individual flip-
flops, this register loses its stored data if it is not clocked for over 50 ns.

The discussions and examples of switch level modeling presented in
this section demonstrated that detailed simulation data can be obtained
by using such models. Although we only covered basic logic primitives,
the concepts presented can be used in modeling dynamic logic and var-
ious clocked gates. The next section presents signal strengths which is
still another feature for low level modeling.

7.2 Strength Modeling

The four-value logic in Verilog provides an adequate precision for most
logic level simulations. The previous section showed that more precise
simulation data can be obtained by using switch level models for the
basic logic level constructs. Another feature of Verilog for a more pre-
cise simulation data is signal strength. This section discusses logic

Detailed Modeling 241

Figure 7.30 Simulation of Dynamic Master-Slave D Flip-flop

Figure 7.31 A 4-bit Register

`timescale 1ns/100ps

module register_4 (input [3:0] d, input c, output [3:0] q);
genvar i;
generate for (i=0; i<4; i=i+1) begin:bits

master_slave_dff ff (d[i], c, q[i]);
end endgenerate

endmodule

strengths and application of this language facility in modeling gate and
switch level circuits.

7.2.1 Strength values

Verilog allows specification of drive strength for primitive gate outputs
and nets. Gate output or net signal strength values are specified in a
set of parenthesis that include a strength value for logic 0 and one for
logic 1. Allowable drive strengths for logic 0 (i.e., strength0) are supply0,
strong0, pull0, weak0, and highz0. Similarly, allowable strengths for
logic 1 (strength1) are supply1, strong1, pull1, weak1, and highz1.
Strength values can appear in any order in the set of parenthesis that
follows a primitive name, a net declaration, or the assign keyword. The
default strengths for a gate output or a net are strong0 and strong1
for logic 0 and logic 1, respectively. Charge strengths, representing the
strength of a capacitive net, are also supported in Verilog. Charge
strength values are large, medium, and small.

7.2.1.1 Primitive strengths. Gate output drive strengths are specified after
the primitive name when the primitive is instantiated. The example below
shows a nand primitive with pull0 and pull1 output strength values.

nand (pull0, pull1) # (3, 5) n1 (w, a, b, c);

Figure 7.32 shows strength values for outputs of various built-in gate
types. Strength values in this figure are listed in the descending order, i.e.,
supply0 is the highest and highz0 is the lowest strength for logic 0.

7.2.1.2 Net strength. Two types of net strengths are drive_strength and
charge_strength. For wire and tri type nets, strength values represent

242 Chapter Seven

PULL GATESLOGIC
GATES Pullup Pulldown SWITCHES

Strength0

supply0
strong0

pull0
weak0
highz0

supply0
strong0

pull0
weak0

No strength

Strength1

supply1
strong1

pull1
weak1
highz1

supply1
strong1

pull1
weak1

No strength

Figure 7.32 Primitive Gate Output Strength Values

their drive strengths, while for storage nets, i.e., trireg, charge strength
values can be specified. Possible values for drive strength are supply0,
strong0, pull0, weak0, highz0, supply1, strong1, pull1, weak1, and
highz1. Charge strength values are large, medium, and small.

For the situations that a logic block is specified by a continuous assign-
ment, net drive strengths can be specified in a set of parenthesis after
the assign keyword, or with the net declaration that declares the output
of the logic block. For example, the w output of the following logic block
has (pull0, pull1) strength values. The strength values specified for w
are one level lower than the default strong0 and strong1 values.

assign (pull0, pull1) # (3, 5) w = s ? A: B;

Drive strengths of a net specify its logic 1 and 0 drive powers. For as
long as a net is not used as a switch input or not involved in a multi-driver
resolution, its weak or strong logic values do not affect the output value
of the logic using the net. However, strengths of a net used as a switch
input affect the strength of the output of the switch. Furthermore,
strengths of several signals driving a net, affect the way net logic values
are resolved. Details of how drive strength values affect logic values will
be discussed in the sections that follow. An example drive strength for a
wand type net is shown below. The declared net is sim with pull0 and
supply1 strength values. pull0 is one level below the strong0 default
strength for logic 0, and supply1 is one level higher than the default
strength for logic 1.

wand (pull0, supply1) sim;

The strength of storage nets specify how weak or strong the charge
capability of the net is. Three strength values, large, medium, and
small are used for these net types, and the default is medium. In a
capacitive network, charge strengths propagate from a larger trireg net
to a smaller trireg net. Causing a connection (e.g., with a bidirectional
switch) between a small undriven trireg and a large undriven trireg
of a different logic value, makes the value of the small trireg logic
value to be overwritten by that of the large trireg. An example trireg
declaration with small charge strength is shown below. This level of
charge strength is one level below the default level.

trireg (small) #(3, 2, 50) cap1;

Figure 7.33 shows drive-strength values for wire and tri nets and
charge-strength values for the trireg net type.

Detailed Modeling 243

244 Chapter Seven

wire (tri), wand (triand),
wor (trior), tri0, tri1 trireg

Strength values Level Strength values
supply0 7
strong0 6

pull0 5
4 large (0)

weak0 3
2 medium (0)
1 small (0)

highz0 0
highz1 0

1 small (1)
2 medium (1)

weak1 3
4 large (1)

pull1 5
strong1 6
supply1 7

Strongest

Strongest

Weak

Figure 7.33 net Types and their Strengths

7.2.2 Strength used in resolution

Strength values are instrumental in deciding logic values of signals
with multiple drivers. If a net has multiple drivers of the same strength
values, its net type, i.e., wire, wand, or wor decides on the final value
of the net. However, if drive strengths of multiple drivers of a net are
different, conflicts are resolved by taking the logic value that has a
higher strength. In this case resolution type of the net (i.e., wire, wand,
or wor) does not play any role in determining the net value.

Examples that follow show how strength values are altered and how
they contribute to logic values of nets with multiple drivers. Figure 7.34
shows a network of buffers producing two drivers for every output of the
circuit. In two Verilog codes for this circuit we show that resolution func-
tions are only used when drive strengths cannot determine output values.

Figure 7.35 shows a Verilog module that corresponds to the diagram
of Fig. 7.34. The z1, z2, z3 outputs are nets of types wire, wand, and
wor respectively. These outputs are driven by buf primitives that have
pull1 and weak0 output strengths. As shown in the simulation run of
Fig. 7.36, in spite of different net types of z1, z2, and z3, waveforms gen-
erated on these outputs are the same. The reason is, since our Verilog
model uses pull1 for logic 1 and weak0 for logic 0, and pull is stronger

Detailed Modeling 245

a

wired_strength

b

z1

z2

z3

Figure 7.34 Buffers Producing Multiple Drivers

Figure 7.35 Verilog Code of Buffer Circuit, Ignoring Resolutions

`timescale 1ns/100ps

module wired_strength (input a, b, output z1, z2, z3);

wire z1;
wand z2;
wor z3;

// Wired logic
buf (pull1, weak0) (z1, a);
buf (pull1, weak0) (z1, b);h
// Wired-and logic
buf (pull1, weak0) (z2, a);
buf (pull1, weak0) (z2, b);
// Wired-or logic
buf (pull1, weak0) a3 (z3, a);
buf (pull1, weak0) b3 (z3, b);

endmodule

246 Chapter Seven

Figure 7.36 Output Waveforms: pull1, weak0

Figure 7.37 Verilog Code of Buffer Circuit Using Resolutions

`timescale 1ns/100ps

module wired_strength (input a, b, output z1, z2, z3);

wire z1;
wand z2;
wor z3;

// Wired logic
buf (pull1, pull0) (z1, a);
buf (pull1, pull0) (z1, b);
// Wired-and logic
buf (pull1, pull0) (z2, a);
buf (pull1, pull0) (z2, b);
// Wired-or logic
buf (pull1, pull0) (z3, a);
buf (pull1, pull0) (z3, b);

endmodule

than weak, in the case that an output is driven by conflicting values,
the value 1 overrides 0. This causes the net value to become 1 regard-
less of its type.

Another Verilog code for the buffer circuit is shown in Fig. 7.37. Unlike
the code of Fig. 7.35, this code uses equal strengths for buf outputs. As
will be seen, this situation forces the use of resolution functions. Note
that resolutions of z1, z2, and z3 are wire, wand, and wor respectively.

The simulation run of this circuit (Fig. 7.38) reveals that the three out-
puts (z1, z2, and z3) are different. This is because buf outputs have
equal pull1 and pull0 strengths for logic 1 and 0. Therefore conflicting
values driving these outputs will be resolved by the resolutions specified

for each output. Since z1, z2, and z3 use wire, wand, and wor resolu-
tions, these functions are used for determining output values.

7.2.3 Strength reduction

Switch outputs cannot have strength specification. Instead they pass the
strength of their inputs to their output with certain changes that depend
on the switch type.

The nmos, pmos, and cmos switches pass the strength of their inputs
to their outputs, except that a supply strength is reduced to strong.
The same applies to tran, tranif1, tranif0, except that passing or
reducing strengths occur across their bidirectional ports. Consider for
example, the nmos instantiation shown below. This instantiation uses
the sim net example presented in Sec. 7.2.1.2 with pull0 and supply1
strength values. Since this signal is used at the input of an nmos
switch with a Gate input value of 1, the strength of the sim_out output
of the nmos switch becomes (pull0, strong1).

nmos T1 (sim_out, sim, 1);

Resistive switches, i.e., rnmos, rpmos, rcmos, rtran, rtranif1, and
rtranif0, reduce supply strength by two to pull, and reduce other
strength levels by one. A weak strength, for which there is no lower drive
strength, is reduced to a medium capacitor. Charge strengths are also
reduced by one across these structures. The small charge strength and
highz drive strength are not affected by resistive switches. As an exam-
ple for resistive reduction, consider the rnmos instantiation shown
below. This instantiation uses the sim net example used above with
pull0 and supply1 strength values. Since this signal is used at the
input of an rnmos switch with a Gate input value of 1, the strength of
the sim_out output of the rnmos switch becomes (weak0, pull1).

rnmos T2 (sim_out, sim, 1);

Detailed Modeling 247

Figure 7.38 Output Waveforms: pull1, pull0

An MOS circuit for demonstrating strength reduction in Verilog is
shown in Fig. 7.39. Figure 7.40 shows a Verilog code corresponding to
this diagram. This code uses nmos and pmos primitives that pass
default strong0 and strong1 strength values to their outputs.

Simulating this circuit with the testbench of Fig. 7.41, results in the
display report of Fig. 7.42. The %v format, in the $monitor command
of Fig. 7.41, displays signal strength values. The a input of the circuit of
Fig. 7.40 has strong0 and strong1 default strength values. As expected
(shown in Fig. 7.42), these values propagate to nmos and pmos outputs.
Note in this figure that St1 and St0 are used for strong1 and strong0.
As shown, at 200 ns and 300 ns, zp is St1 and St0, respectively.

Strength reduction is demonstrated in the example of Fig. 7.43. The
Verilog code of this example uses rnmos and rpmos resistive switches
for implementing the circuit of Fig. 7.39.

248 Chapter Seven

a

mos_strength

c

zn

zp

Figure 7.39 MOS Pass Circuit

Figure 7.40 Verilog Code Using Nonresistive Switches

`timescale 1ns/100ps

module mos_strength (a, c, zn, zp);
input a, c;
output zn, zp;

nmos (zn, a, c);
pmos (zp, a, c);

endmodule

Detailed Modeling 249

Figure 7.41 Testing mos_strength

`timescale 1ns/100ps

module test_mos_strength;
reg a, c;
wire zn, zp;

mos_strength cut (a, c, zn, zp);

initial begin
#10 a = 1;
#10 c = 0;
#10 a = 0;
#10 c = 1;
#10 a = 1;
#10 c = 0;
#10 $stop;

end
initial

$monitor (“At time %t zn: %v, zp: %v”, $time, zn, zp);
endmodule

Figure 7.42 Nonresistive Display Report

At time 0 zn: StX, zp: StX
At time 100 zn: StH, zp: StH
At time 200 zn: HiZ, zp: St1
At time 300 zn: HiZ, zp: St0
At time 400 zn: St0, zp: HiZ
At time 500 zn: St1, zp: HiZ
At time 600 zn: HiZ, zp: St1

Figure 7.43 Verilog Code Using Resistive Switches

`timescale 1ns/100ps

module mos_strength (a, c, zn, zp);
input a, c;
output zn, zp;

rnmos (zn, a, c);
rpmos (zp, a, c);

endmodule

Simulating this circuit using the testbench of Fig. 7.41 produces the
report shown in Fig. 7.44. As shown, strength values for logic 1 and 0 at
the output of the resistive circuit are pull, which is one strength level lower
than strong. At 200 ns and 300 ns when a propagates to zp its strengths
are reduced from strong1 and strong0 to pull1 and pull0. Similarly, at
400 ns and 500 ns, zn output strengths become pull0 and pull1.

Sections 7.2.2 and 7.2.3 briefly discussed several simple cases of
strength modeling in Verilog. The concept of ambiguous strength, which
is defined as a strength value consisting of more than one level, also
exists in Verilog. This concept and more details of charge and drive
strengths can be found in the standard IEEE Language Reference
Manual for Verilog.

7.3 Summary

This chapter discussed some of the Verilog features to generate detailed
models for components of a cell library or an existing set of parts. These
features are not synthesizable and their only purpose is to generate
accurate models. The first part of this chapter discussed switch level
Verilog models. We discussed unidirectional and bidirectional switches.
We also showed the use of capacitive nodes as a means of storing memory
data. More complex switch level structures can be modeled using con-
cepts presented here. The second part of this chapter gave a brief pres-
entation of strength modeling. Combining switches and signal drives and
charge strengths enable Verilog modelers to write fairly accurate models
for VLSI cells.

Problems

7.1 Generate a switch level description for an AOI gate using NMOS and
PMOS transistors [w = (a.b + c.d)`].

7.2 Use the AOI gate of Problem 1 to generate a quad 2-to-1 multiplexer.

250 Chapter Seven

Figure 7.44 Resistive Display Report

At time 0 zn: PuX, zp: PuX
At time 100 zn: PuH, zp: PuH
At time 200 zn: HiZ, zp: Pu1
At time 300 zn: HiZ, zp: Pu0
At time 400 zn: Pu0, zp: HiZ
At time 500 zn: Pu1, zp: HiZ
At time 600 zn: HiZ, zp: Pu1

7.3 Generate a switch level description for a MAJ (Majority) gate using NMOS
and PMOS transistors (w = a.b + a.c + b.c).

7.4 After minimization of the following function, show its transistor level
CMOS implementation. Use a single complex gate for realizing this function.
Available to you are all inputs and their complements. Your implementation
should use a minimum number of transistors.

f (a, b, c, d) = a’ . c’ . d’ + b . d’

Suggested Reading

Brown, S., and Z. Vranesic, Fundamentals of Digital Logic with Verilog Design, McGraw-
Hill, New York, 2002, ISBN: 0-07-283878-7.

IEEE Std 1364-2001, IEEE Standard Verilog Language Reference Manual, SH94921-
TBR (print) SS94921-TBR (electronic), ISBN 0-7381-2827-9 (print and electronic),
2001.

Uyemura, J.P. Introduction to VLSI Circuits and Systems, John Wiley & Sons, Hoboken,
New Jersey, USA, 2002, ISBN: 0471127043.

Weste, N.H.E, and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective
(3rd Edition), 3rd ed, Addison Wesley, Boston, MA, 2004, ISBN: 0321149017.

Detailed Modeling 251

This page intentionally left blank

Chapter

8
RT Level Design and Test

This chapter discusses design and test of complete systems. Topics dis-
cussed in Chaps. 4, 5, and 6 are used here to describe systems for syn-
thesis and develop testbenches for these complete systems. We will
show how a design is partitioned into its datapath and controller and
how these components are described in Verilog. In a complex design we
will show further partitioning of the datapath of the design into its indi-
vidual registers, busses, and logic units. For testing our designs, we
show how interactive testing and use of files are utilized for testing
actual systems. The chapter begins with specification and design of a
sequential multiplier. We will then discuss a simple processor to famil-
iarize readers with design methodology that we are promoting for larger
systems. The last section of this chapter uses our design methodology
to design, code and test a CPU with a typical architecture.

8.1 Sequential Multiplier

Our first example of RT level system design is an add-and-shift sequen-
tial multiplier, with 8-bit A and B inputs and a 16-bit result. The block
diagram of this circuit is shown in Fig. 8.1. This multiplier has an 8-bit
bidirectional I/O for inputting its A and B operands, and outputting its
16-bit output one byte at a time.

Multiplication begins with the start pulse. On the clock edge that
start is 1, operand A is on the databus and in the next clock, this bus
will contain operand B. The two operands appear on the bus in two con-
secutive clock pulses. After accepting these data inputs, the multiplier
begins its multiplication process and when it is completed, it starts send-
ing the result out on the databus. When the least-significant byte is placed
on databus, the lsb_out output is issued, and for the most-significant byte,

253

Copyright © 2006 by The McGraw-Hill Publishing Companies, Inc. Click here for terms of use.

msb_out is issued. When both bytes are outputted, done becomes 1, and
the multiplier is ready for another set of data.

The multiplexed bidirectorial databus is used to reduce the total
number of input and output pins of the multiplier.

8.1.1 Shift-and-add multiplication process

When designing multipliers there is always a compromise to be made
between how fast the multiplication process is done and how much hard-
ware we are using for its implementation. A simple multiplication method
that is slow, but efficient in use of hardware is the shift-and-add method.
In this method, depending on bit i of operand A, either operand B is
added to the collected partial result and then shifted to the right (when
bit i is 1), or (when bit i is 0) the collected partial result is shifted one
place to the right without being added to B. This method can better be
understood by considering how binary multiplication is done manually.
Figure 8.2 shows manual multiplication of two 8-bit binary numbers.

We start considering bits of A from right to left. If a bit value is 0 we
select 00000000 to be added with the next partial product, and if it is
a 1, the value of B is selected. This process repeats, but each time
00000000 or B is selected, it is written one place to the left with respect
to the previous value. When all bits of A are considered, we add all cal-
culated values to come up with the multiplication result.

254 Chapter Eight

start

Clk
lsb-out

done

msb-out

datapath

Multiplexer

Figure 8.1 Multiplier Block Diagram

1 0 1 1 0 1 1 0

1 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0

1 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1 0 1 1 0 1 1 0

1 1 0 1 0 0 1 0 0 1 1 1 0 0 0

B:

A:

Figure 8.2 Manual Binary Multi-
plication

Understanding hardware implementation of this procedure becomes
easier if we make certain modifications to this procedure. First, instead
of moving our observation point from one bit of A to another, we put A
in a shift-register, always observe its right-most bit, and after every
calculation, we move it one place to the right, making its next bit acces-
sible. Second, for the partial products, instead of writing one and the
next one to its left, we move the partial product to the right as we are
writing it. Finally, instead of calculating all partial products and adding
them up at the end, we add a newly calculated partial product to the pre-
vious one and write the calculated value as the new partial result.

Therefore, if the observed bit of A is 0, 00000000 is to be added to the
previously calculated partial result, and the new value should be shifted
one place to the right. In this case, since the value being added to the
partial result is 00000000, adding is not necessary, and only shifting
the partial result is sufficient. This process is called shift. However, if
the observed bit of A is 1, B is to be added to the previously calculated
partial result, and the calculated new sum must be shifted one place
to the right. This is called add-and-shift.

Repeating the above procedure, when all bits of A are shifted out, the
partial result becomes the final multiplication result. We use a 4-bit
example to clarify the above procedure. As shown in Fig. 8.3, A = 1001
and B = 1101 are to be multiplied. Initially at time 0, A is in a shift-
register with a register for partial results (P) on its left.

At the time 0, because A[0] is 1, the partial sum of B + P is calculated.
This value is 01101 (shown in the upper part of time 1) and has 5 bits

RT Level Design and Test 255

0 0 00P: 0 0 11A:

1 0 11B:

t = 0

1 1 00 1 0 01

1 0 11

t = 1 0 0 0 0 + 1 1 0 1 0 1 1 0 1

0 1 10 1 1 00

1 0 11

t = 2 0 1 1 0 + 0 0 0 0 0 0 1 1 0

0 0 10 0 1 11

1 0 11

t = 3 0 0 1 1 + 0 0 0 0 0 0 0 1 1

1 1 10 1 0 10

1 0 11

t = 4 0 0 0 1 + 1 1 0 1 0 1 1 1 0

A and B

Result

Figure 8.3 Hardware Oriented Multiplication Process

to consider the carry bit. The right most bit of this partial sum is shifted
into the A register, and the other bits replace the old value of P. When A
is shifted, 0 moves into the A[0] position. This value is observed at time 1.
At this time, because A[0] is 0, 0000 + P is calculated (instead of B + P).
This value is 00110, the right most bit of which is shifted into A, and
the rest replace P. This process repeats 4 times. At the end of the 4th

cycle, the least significant 4 bits of the multiplication result become
available in A and the most-significant bits in P. The example used
here performed 9*13 and 117 is obtained as the result of this operation.

8.1.2 Sequential multiplier design

The multiplication process discussed in the previous section justifies the
hardware implementation that is being discussed here.

8.1.2.1 Control data partitioning. The multiplier has a datapath and a
controller. The data part consists of registers, logic units, and their
interconnecting busses. The controller is a state machine that issues con-
trol signals for control of what gets clocked into the data registers.

As shown in Fig. 8.4, the data path registers and the controller are
triggered with the same clock signal. On the rising edge of the system
clock, the controller goes into a new state. In this state, several control
signals are issued, and as a result the components of the datapath start
reacting to these signals. The time given for all activities of the data-
path to stabilize is from one edge of the clock to another. Values that are
propagated to the inputs of the datapath registers are clocked into these
registers with every positive edge of the clock.

8.1.2.2 Multiplier datapath. Figure 8.5 shows the datapath of the sequen-
tial multiplier. As shown, P and B are outputs of 8-bit registers and A

256 Chapter Eight

Datapath

databus

8

clr_P

load_P

load_B

msb_out

lsb_out
sel_sum

load_A
shift_A

start

lsb_out

msb_out

done

A0

Figure 8.4 Datapath and Controller

is the output of an 8-bit shift-register. These components are imple-
mented with always statements in the Verilog code of the multiplier.
An adder, a multiplexer and two tri-state buffers constitute the other
components of this datapath. These components are implemented with
assign statements.

Control signals that are outputs of the controller and inputs of the data-
path (Fig. 8.4), are named according to their functionalities like loading
registers, shifting, etc. These signals are shown in the corresponding
blocks of Fig. 8.5 next to the data component that they control.

The input databus connects to the inputs of A and B to load multiplier
and multiplicand into these registers. This bi-directional bus is driven
by the outputs of P and A through tri-state buffers. These tri-states
become active when multiplication result is ready.

The output from B and P are added to form co and sum to be put in P
if adding is to take place. Otherwise, P is put on ShiftAdd to be shifted,
while being put back into P. ShiftAdd is the multiplexer output that
selects sum or P. The sel_sum control input determines if sum or P is
to go on the multiplexer output.

RT Level Design and Test 257

sel_sum
co

sumB
data

load_B

clk

clr_P

load_P

A0

AP

load_A

msb_out

lsb_out

shift_A

ShiftAdd[0]

S
hiftA

dd

Figure 8.5 Multiplier Block Diagram (Verilog code correspondence)

The AND function shown in Fig. 8.5 selects carry-out from the adder
or 0 depending on the value of sel_sum control input. This value is con-
catenated to the left of the multiplexer output to form a 9-bit vector. This
vector has P+B or P with a carry to its left. The right-most bit of this
9-bit vector is split and goes into the serial input of the shift-register that
contains A, and the other eight bits go into register P. Note that con-
catenation of the AND output to the left of the multiplexer output and
splitting the right bit from this 9-bit vector, effectively produce a shifted
result that is clocked into P.

8.1.2.3 Datapath description. The complete datapath Verilog description
of the multiplier is shown in Fig. 8.6. Verilog assign and always state-
ments are used to describe components of the datapath. As shown here,

258 Chapter Eight

Figure 8.6 Datapath Verilog Code

module datapath (input clk, clr_P, load_P, load_B,
msb_out, lsb_out, sel_sum, load_A, shift_A,
inout [7:0] data, output A0);

wire [7:0] sum, ShiftAdd;
reg [7:0] A, B, P;
wire co;
always @(posedge clk) if (load_B) B <= data;

always @(posedge clk)
if (load_P) P <= {co&sel_sum, ShiftAdd[7:1]};

assign { co, sum } = P + B;

always @(posedge clk)
case ({ load_A, shift_A })

2’b01 : A <= { ShiftAdd[0], A[7:1] };
2’b10 : A <= data;
default : A <= A;

endcase
assign A0 = A[0];

assign ShiftAdd = clr_P ? 8’h0 : (~sel_sum ? P : sum);

assign data = lsb_out ? A : 8’hzz;
assign data = msb_out ? P : 8’hzz;

endmodule

the first two always statements represent registers B and P for operand
B and the partial result, P. The assign statement that comes next in
this figure represents the 8-bit adder. This adder adds P and B.

Another component of our multiplier datapath is an 8-bit shift-register
for operand A of the multiplier. This shift-register either loads A with
data (controlled by load_A) or shifts its contents (controlled by shift_A).
An always statement to implement this shift-register is shown in Fig. 8.6.
Following this statement, an assign statement representing the mul-
tiplexer for selection of sum or P is shown in the Verilog code of the data-
path. This statement puts 8’h0 on ShiftAdd if clr_P is active. We will
use this enabling feature of the multiplexer for resetting P at the start
of the multiplication process.

The last two assign statements of Fig. 8.6 represent two sets of tri-
state buffers driving the bidirectional data bus of the datapath. As
shown, if lsb_out is 1, A (the least-significant byte of result) drives data
and if msb_out is 1, P (the most-significant byte) drives data.

8.1.2.4 Multiplier controller. The multiplier controller is a finite state
machine that has two starting states, eight multiplication states, and
two ending states. States and their binary assignments are shown in
Fig. 8.7. In the ̀ idle state the multiplier waits for start while loading A.
In ̀ init, it loads the second operand B. In ̀ m1 to ̀ m8, the multiplier per-
forms add-and-shift of P+B, or P+0, depending on A0. In the last two
states (`rslt1 and rslt2), the two halves of the result are put on databus.

The Verilog code of the controller is shown in Fig. 8.8. This code declares
signals that connect to datapath ports, and uses a single always block
to issue control signals and make state transitions. At the beginning of
this always block all control signal outputs are set to their inactive

RT Level Design and Test 259

Figure 8.7 Multiplier Control States

`define idle 4’b0000
`define init 4’b0001
`define m1 4’b0010
`define m2 4’b0011
`define m3 4’b0100
`define m4 4’b0101
`define m5 4’b0110
`define m6 4’b0111
`define m7 4’b1000
`define m8 4’b1001
`define rslt1 4’b1010
`define rslt2 4’b1011

260 Chapter Eight

Figure 8.8 Verilog Code of Controller

module controller (input clk, start, A0,
output reg clr_P, load_P, load_B, msb_out,

lsb_out, sel_sum,
output reg load_A, Shift_A, done);

reg [3:0] current;

always @ (posedge clk) begin
clr_P = 0; load_P = 0; load_B = 0; msb_out = 0;
lsb_out = 0;
sel_sum = 0; load_A = 0; Shift_A = 0; done = 0;

case (current)
`idle :

if (~start) begin
current <= `idle;
done = 1;

end else begin
current <= `init;
load_A = 1; clr_P = 1; load_P = 1;

end
`init : begin

current <= `m1;
load_B = 1;

end
`m1, `m2, `m3, `m4, `m5, `m6, `m6, `m7, `m8 : begin

current <= current + 1;
Shift_A = 1; load_P = 1; if (A0) sel_sum = 1;

end
`rslt1 : begin

current <= `rslt2;
lsb_out = 1;

end
`rslt2 : begin

current <= `idle;
msb_out = 1;

end
default : current <= `idle;

endcase
end

endmodule

values. This eliminates unwanted latches that may be generated by a
synthesis tool for these outputs.

The 4-bit current variable represents the currently active state of the
machine. When current is `idle and start is 0, the done output remains
high. In this state if start becomes 1, control signals load_A, clr_P and
load_P become active to load A with databus and clear the P register.
Clearing P requires clr_P to put 0’s on the ShiftAdd of the datapath and
loading the 0’s into P by asserting load_P.

In `m1 to `m8 states, A is shifted, P is loaded, and if A0 is 1, sel_sum
is asserted. As discussed in relation to datapath, sel_sum controls shifted
P+B (or shifted P+0) to go into P. In the result states, lsb_out and
msb_out are asserted in two consecutive clocks in order to put A and P
on the data bus respectively.

8.1.2.5 Top-level code of the multiplier. Figure 8.9 shows the top-level
Multiplier module. The datapath and controller modules are instanti-
ated here. The input and output ports of this unit are according to the
block diagram of Fig. 8.1. This description is synthesizable, and can be
used in any FPGA device programming environment for synthesis and
device programming.

8.1.3 Multiplier testing

This section shows an auto-check interactive testbench for our sequential
multiplier. Several forms of data applications and result monitoring are

RT Level Design and Test 261

Figure 8.9 Top-Level Multiplier Code

module Multiplier (input clk, start,
inout [7:0] databus,
output lsb_out, msb_out, done);

wire clr_P, load_P, load_B, msb_out,
lsb_out, sel_sum, load_A, Shift_A;

datapath dpu(clk, clr_P, load_P, load_B,
msb_out, lsb_out, sel_sum, load_A, Shift_A,
databus, A0);

controller cu(clk, start, A0, clr_P, load_P, load_B,
msb_out, lsb_out, sel_sum, load_A, Shift_A,
done);

endmodule

demonstrated by this example. The outline of the test_multiplier module
is shown in Fig. 8.10.

In the declarative part of this testbench inputs and outputs of the mul-
tiplier are declared as reg and wire, respectively. Since databus of the
multiplier is a bidirectional bus, it is declared as wire for reading it, and
a corresponding im_data reg is declared for writing into it. An assign
statement drives databus with im_data. When writing into this bus from
the testbench, the writing must be done into im_data, and after the com-
pletion of writing the bus must be released by writing 8’hZZ into it.

Other variables declared in the testbench of Fig. 8.10 are expected_result
and multiplier_result. The latter is for the result read from the multiplier,
and the former is what is calculated in the testbench. It is expected that
these values are the same.

The testbench shown in Fig. 8.10, applies three rounds of test to the
Multiplier module. In each round, data is applied to the module under
test and results are read and compared with the expected results. These
are tasks performed by this testbench:

262 Chapter Eight

Figure 8.10 Multiplier Testbench Outline

timescale 1ns/100ps

module test_multiplier;
reg clk, start, error;
wire [7:0] databus;
wire lsb_out, msb_out, done;
reg [7:0] mem1[0:2], mem2[0:2];
reg [7:0] im_data, opnd1, opnd2;
reg [15:0] expected_result, multiplier_result;
integer indx;

Multiplier uut (clk, start, databus, lsb_out, msb_out, done);

initial begin: Apply_Data ... end // Figure 8.11
initial begin: Apply_Start ... end // Figure 8.12
initial begin: Expected_Result ... end // Figure 8.13
always @(posedge clk)

begin: Actual_Result ... end // Figure 8.14
always @(posedge clk)

begin: Compare_Results ... end // Figure 8.15
always #50 clk = ~clk;
assign databus=im_data;

endmodule

� Read data files data1.dat and data2.dat and apply data to databus
� Apply start to start multiplication
� Calculate the expected result
� Wait for multiplication to complete, and collect the calculated result
� Compare expected and calculated results and issue error if they do not

match

These tasks are timed independently, and at the same time, an always
block generates a periodic signal on clk that clocks the multiplier.

8.1.3.1 Reading data files. Figure 8.11 shows the Apply_Data initial block
that is responsible for reading data and applying them to im_data, which
in turn goes on databus. Hexadecimal data from data1.dat and data2.dat
external files are read into mem1 and mem2. In each round of test, data
from mem1 and mem2 are put on im_data. Data from mem2 is distanced
from that of mem1 by 100 ns. This way, the latter is interpreted as data
for the A operand and the former for the B multiplication operand. After
placing this data, 8’hzz is put on im_data. This releases the databus so that
it can be driven by the multiplier when its result is ready.

8.1.3.2 Applying start. Figure 8.12 shows an initial block in which vari-
able initializations take place and start signal is issued. Using a repeat
statement, three 100 ns pulses distanced by 1400 ns are placed on start.

8.1.3.3 Calculating expected result. Figure 8.13 shows an initial block
that reads data that is placed on databus by the Apply_Data block (Fig. 8.11),

RT Level Design and Test 263

Figure 8.11 Reading Data Files

initial begin: Apply_Data
indx=0;
$readmemh (“data1.dat”, mem1);
$readmemh (“data2.dat”, mem2);
repeat(3) begin

#300 im_data = mem1 [indx];
#100 im_data = mem2 [indx];
#100 im_data = 8’hzz;
indx = indx+1;
#1000;

end
#200 $stop;

end

and calculates the expected multiplication result. After start, when
databus is updated, the first operand is read into opnd1. The next time
databus changes, opnd2 is read. The expected result is calculated using
these operands.

8.1.3.4 Reading multiplier output. When the multiplier completes its task,
it issues msb_out and lsb_out to signal that it has readied the two bytes
of the result. The always block of Fig. 8.14 is triggered by the rising edge
of the circuit clock. After a clock edge, if msb_out or lsb_out is 1, it reads
the databus and puts in its corresponding position in multiplier_result.

8.1.3.5 Comparing results. Figure 8.15 shows the always block that is
responsible for comparing actual and expected multiplication results. After
the active edge of the clock, if done is 1, then comparing multiplier_result
and expected_result takes place. If values of these variables do not match
error is issued.

The self-running testbench presented here verifies RT level operation
of our multiplier. This design is synthesizable and because of the timing

264 Chapter Eight

Figure 8.12 Initializations and Start

initial begin: Apply_Start
clk=1’b0; start=1’b0; im_data=8’hzz;
#200 ;
repeat(3) begin

#50 start = 1’b1;
#100 start = 1’b0;
#1350;

end
end

Figure 8.13 Calculating Expected Result

initial begin: Expected_Result
error=1’b0;
repeat(3) begin

wait (start==1’b1);
@(databus);
opnd1=databus;
@(databus);
opnd2=databus;
expected_result = opnd1 * opnd2;

end
end

used in our testbench, it can also be used for the post-synthesis descrip-
tion of our multiplier.

This section showed a complete design of a system with a well-defined
datapath and a controller. The design demonstrates top-down design,
data/control partitioning, and a complete flow from design to test of a
system. This flow will be used in the sections that follow to illustrate
how Verilog can be used for design of systems that access memory for
instructions and data.

8.2 von Neumann Computer Model

The previous section was our first step in showing how a complete design
could be put together and tested in Verilog. In this section we take our
presentation of complete system design one step further, and present
design, implementation, and testbench development for a hardware
based on the von Neumann computer model.

8.2.1 Processor and memory model

The von Neumann computer model is based on a processor using instruc-
tions and data from a single memory. Using a sequencer (see Fig. 8.16),
the processor fetches instructions from its memory. An instruction has
an opcode indicating the function it is supposed to perform. Using this
opcode, the processor performs its proper operation. Such an operation
may involve reading or writing data from or to the memory, for which
the same memory as that of the instructions will be used.

Our design example in this section is a simply von Neumann model
with memory accessing mechanism for instructions and data. This
design is at the RT level and has a separate datapath and control unit.

RT Level Design and Test 265

Figure 8.14 Reading Multiplier Results

always @(posedge clk) begin: Actual_Result
if (msb_out) multiplier_result[15:8] = databus;
if (lsb_out) multiplier_result[7:0] = databus;

end

Figure 8.15 Comparing Results

always @(posedge clk) begin: Compare_Results
if (done)
if (multiplier_result != expected_result) error = 1;
else error = 0;

end

In designing the datapath we partition it into its subcomponents and
describe each subcomponent separately. This includes the instruction
sequencer part of the datapath that is the program counter component.

In testing this simple model we will show how a memory model can be
written in Verilog and how external files can be used for representing mem-
ories for read and write. Verilog file handling tasks will be used for this pur-
pose. To demonstrate some of Verilog testbench facilities, our memory
model will be developed to read processor instructions in a mnemonic
format and convert them to binary for the processor hardware to access.

8.2.2 Processor model specification

The example that we use is a simple adding machine, which we refer to
as AddingCPU. It must be mentioned, that we are using this example
to demonstrate our design and test methodologies. This specific exam-
ple has very little practical value, if it were to be designed for a real appli-
cation, much simpler coding than what we are presenting here could be
used. The techniques presented here will be used for the design and test
of the processor of the next section.

Our Adding CPU reads Load, Add, Store, and Jump instructions
from its memory, and depending on the instruction it reads, loads data,
performs addition, stores data into memory, or jumps to another memory
location. Figure 8.17 shows the overall structure of this adding machine.

The circuit shown has a 6-bit address bus to address the memory for read
and write operations. The 8-bit data bus of this machine is used for data
in and out of the machine. Control signals, reset, rd_mem, and wr_mem
are used for resetting, memory read, and memory write operations.

The machine starts reading its memory from location 0. An 8-bit word
fetched from the memory consists of a 2-bit opcode and a 6-bit data or
address. This field is either an immediate data or a memory address
where the operand of the fetched instruction is. Figure 8.18 shows our
machine’s opcodes and instruction format.

266 Chapter Eight

addressbus

databus

Program

sequencer

Processor

ControlData

Memory

Figure 8.16 von Neumann Process Model

The Adding CPU has a main register called AC (accumulator). The
Load instruction directs the machine to load the addressed data from
the memory into AC. The Store instruction causes contents of AC to be
written into the addressed location in the memory. The operand of the
Add instruction is immd (immediate). This instruction adds immd to
the present contents of AC and puts the result back into AC. The Jump
instruction loads the 6-bit address into the program counter of our
machine, causing the next instruction to be fetched from this address.

8.2.3 Designing the adding CPU

The first step in the design of our adding machine is to decide on its data
and control partitioning and decide what goes into its data part and what
behavior is expected from its controller.

The datapath of the design has the AC register for keeping data to
operate on, the PC register to keep track of the address being fetched,
and an adder unit to perform the addition. In addition, the datapath has

RT Level Design and Test 267

Adding CPU

8 6
adr_bus

rd_mem

wr_mem

data_bus

reset

clk

Figure 8.17 Interface of the Adding CPU Example

00

01

10

11

addr

addr

addr

immd

Load AC with (addr)

Store AC into (addr)

Jump to addr

Add Ac with immd

Figure 8.18 Instruction Format

an instruction register (IR) for storing the most recent instruction
fetched. Data registers are clocked with the same clock as the controller.

The controller part is a finite state machine (FSM) that looks at the
opcode of the instruction in IR and decides on how data is to be routed.

8.2.4 Design of datapath

As indicated above, the main components of the datapath of our design
are AC, PC (program counter), IR, and an ALU. Detailed operation of
these components will be decided once we decide on the architecture that
incorporates them.

Given the Adding CPU description of Sec. 8.2.2, the bussing shown in
Fig. 8.19 is appropriate for handling the necessary operations men-
tioned in this section. As shown here, the datapath has an internal dbus
bus. The external bidirectional data_bus drives and is driven by dbus.
This bus connects to the input of IR in order to bring instruction read
from the memory into this register.

IR has a load input (ld_ir) that is activated to cause it load from
data_bus. Similarly, this bus connects to AC to bring data read from the
memory into this register. The control signal for loading AC is ld_ac. This
control signal is issued when the Load instruction is being expected. PC
has three control signals ld_pc, inc_pc and clr_pc to load, increment, and

268 Chapter Eight

AC

 PC

 IR

ALU

Controller

Clk reset

rd_mem

wr_mem

6

6

6

8
8

pass

6

addr_bus

dbus

6

ld_pc
in

c_pc

clr_pc

ld_irld_ac

add

dbus_on_data
data_on_dbus

data_bus

pc_on_adrir_on_adr

alu_on_dbus

Figure 8.19 Architectural Design of our Adding Machine

clear it, respectively. The right most 6-bits of IR connect to the input of
PC for execution of the Jump instruction.

For executing the Store instruction, AC is placed on the left input of
ALU and from there to dbus, which eventually goes on data_bus. At the
same time, IR is placed on addr_bus to specify the address in which AC
data is to be stored. For this purpose, the adder unit (ALU) has a pass
control input to make it pass its left input data to its output.

Execution of the Add instruction is done by taking one of the add
operands from AC and the other from IR. For this instruction, activat-
ing the add control input of ALU causes it to perform addition.

The simple bussing structure described above facilitates execution of
all four instructions of our simple Adding CPU. When a bus has more
than one source driving it, e.g., IR and PC driving addr_bus, control sig-
nals from the controller select the source.

8.2.5 Control part design

After the design of the datapath and figuring control signals and their
role in activities in the datapath, the design of the controller becomes
a simple matter. The block diagram of this part is shown in Fig. 8.20.

RT Level Design and Test 269

2opcode

ir_on_adr
pc_on_adr
dbus_on_data

data_on_bus
ld_ir
ld_ac

ld_pc
inc_pc
clr_pc
pass
alu_on_dbus

Reset

Clk

clr_pc

Fetch

pc_on_adr
rd_mem
data_on_dbus
ld_ir
inc_pc

Decode

Execute

ir_on_adr
dbus_on_data

ld_ac
alu_on_dbus
wr_mem

ld_pc

add

rd_mem
wr_mem

reset

Figure 8.20 Controller of adding CPU

The controller of our simple von Neumann machine has four states,
Reset, Fetch, Decode, and Execute. As the machine cycles through these
states, various control signals are issued. In state Reset, for example,
the clr_pc control signal is issued. State Fetch issues pc_on_adr, rd_mem,
data_on_dbus, ld_ir, and inc_pc, to read memory from the present PC
location, route it to IR, load it into IR, and increment PC for the next
memory fetch. Depending on opcode bits, that are the controller inputs,
the Execute state of the controller issues control signals for execution of
Load, Store, Add, and Jump instructions. The next section discusses
details of the controller signals and their role in execution of these
instructions.

8.2.6 AddingCPU Verilog description

We develop the complete Verilog code of our simple adding machine by
developing code for the blocks of Fig. 8.19. We first describe components
of the datapath, and then will form the Verilog code of the datapath by
instantiating and wiring these components. The controller will be
described next, using a state machine coding style. At the end, the
description of our small von Neumann example will be completed by
wiring datapath and controller in a top-level Verilog module.

8.2.6.1 Data components. Datapath components of AddingCPU could
be described by always and assign statements directly in the datapath
description of the machine. Recall that this coding technique was used
for the multiplier example of the previous section. However, in this
example we are taking a more general and extendable approach. We
describe our components so that they can be independently simulated
and tested. This is necessary for large designs with more complex com-
ponents. The approach presented here will be used in describing our
larger machine in the next section. Verilog code for PC, AC, IR, and ALU
modules are shown in Fig. 8.21.

Accumulator (AC) and instruction register (IR) are simple registers
with load enable control inputs. These inputs are driven by control sig-
nals coming from the controller through datapath ports. The program
counter (PC) is a counter with parallel load, increment, and clear capa-
bilities. As shown, this component has three control signals to control
its functionality. The ALU (the last module in Fig. 8.21) is a combina-
tional logic with pass and add control inputs. If pass is 1, the a input
goes on the output, and if add is 1, the ALU output becomes the sum of
a and b.

Codings presented for AC, IR, PC, and ALU are synthesizable and
individually testable. These parts are instantiated in the datapath of our
machine.

270 Chapter Eight

8.2.6.2 Datapath description. Figure 8.22 shows the datapath descrip-
tion of AddingCPU. The module name for this description is DataPath
and it corresponds to the left part of Fig. 8.19. When studying the dis-
cussion below and the Verilog code of the datapath, the reader is encour-
aged to consider Fig. 8.19, and make correspondences between Verilog
signals and constructs with graphical notations of this figure.

The inputs of the Verilog code of Fig. 8.22 are control signals coming
from the controller, and the bidirectional data_bus. The outputs of this
module are the opcode and address bus. The opcode goes out to the con-
troller and the address bus goes to the memory for operand and instruc-
tion fetch.

RT Level Design and Test 271

Figure 8.21 Datapath Components of Adding Machine

module AC (input [7:0] data_in, input load, clk,
output reg [7:0] data_out);

always @(posedge clk)
if(load) data_out <= data_in;

endmodule
//
//
module PC (input [5:0] data_in, input load, inc, clr, clk,

output reg [5:0] data_out);
always @(posedge clk)

if(clr) data_out <= 6’b000_000;
else if(load) data_out <= data_in;
else if(inc) data_out <= data_out + 1;

endmodule
//
//
module IR (input [7:0] data_in, input load, clk,

output reg [7:0] data_out);
always @(posedge clk)

if (load) data_out <= data_in;
endmodule
//
//
module ALU (input [7:0] a, b, input pass, add,

output reg[7:0] alu_out);
always @(a or b or pass or add)

if (pass) alu_out = a;
else if (add) alu_out = a + b;
else alu_out = 0;

endmodule

Following the input and output declarations, the DataPath module
declares internal datapath busses and signals. As shown, these decla-
rations are followed by instantiation of data components, IR, PC, AC,
and ALU. Interconnection of these components are done through wires
and busses declared by wire net declarations. Control signals respon-
sible for loading and incrementing registers and controlling the ALU
function connect to the control inputs of IR, PC, AC, and ALU.

In the last part of DataPath, bus assignments take place. We use bus
control signals coming from the controller to drive a left-hand side bus
either with one of its sources or high-impedance. For example, pc_on_adr
control signal either puts PC output (pc_out) or all Zs on adr_bus. The
dbus bus is declared to connect to the external bidirectional data_bus. Two
assignments are made to dbus using alu_on_dbus and data_on_dbus con-
trol signals. Placement of this intermediate bus to the external data bus
of the datapath (data_bus) is controlled by dbus_on_data control signal.

272 Chapter Eight

Figure 8.22 Datapath Description

module DataPath (input ir_on_adr, pc_on_adr, dbus_on_data,
data_on_dbus, ld_ir, ld_ac, ld_pc,
inc_pc, clr_pc, pass, add, alu_on_dbus,
clk,

output [5:0] adr_bus,
output [1:0] op_code,
inout [7:0] data_bus);

wire [7:0] dbus, ir_out, a_side, alu_out;
wire [5:0] pc_out;

IR ir (dbus, ld_ir, clk, ir_out);
PC pc (ir_out[5:0], ld_pc, inc_pc, clr_pc, clk, pc_out);
AC ac (dbus, ld_ac, clk, a_side);
ALU alu (a_side, {2’b00,ir_out[5:0]}, pass, add, alu_out);

assign adr_bus = ir_on_adr ? ir_out[5:0] : 6’bzz_zzzz;
assign adr_bus = pc_on_adr ? pc_out : 6’bzz_zzzz;
assign dbus = alu_on_dbus ? alu_out : 8’bzzzz_zzzz;
assign data_bus = dbus_on_data ? dbus : 8’bzzzz_zzzz;
assign dbus = data_on_dbus ? data_bus : 8’bzzzz_zzzz;

assign op_code = ir_out[7:6];

endmodule

The last assign statement shown in Fig. 8.22 places most significant IR
bits on the op_code output of DataPath that goes out to the controller.

Although we have used tri-state busses, when synthesizing this cir-
cuit, we can direct our synthesis tool to use AND-OR logic or multi-
plexers to implement these busses.

8.2.6.3 Controller description. The controller code for our adding machine
example is shown in Fig. 8.23. This code corresponds to the right part of
Fig. 8.19 which is shown in more details in Fig. 8.20. In addition to clk
and reset, the controller has the op_code input that is driven by IR and
comes to the controller from the DataPath module (see Fig. 8.19).

The sequencing of control states is implemented by a Huffman style
Verilog code. In this style, an always block handles assignment of values
to present_state, and another always statement uses this register output
as the input of a combinational logic determining next_state. This com-
binational block also sets values to control signals that are outputs of
the controller.

The former always block synthesizes as a register with active high
reset, and the latter, (i.e., combinational) synthesizes to a combinational
block. This block uses present_state and reset on its sensitivity list. For
synthesis purposes and to avoid output latches, all outputs of this block,
that are the control signals, are set to their inactive, 0, values. In the
body of the combinational always block, a case statement checks pres-
ent_state against the states of the machine (‘Reset, ‘Fetch, ‘Decode, and
‘Execute), and activates the proper control signals.

The ‘Reset state activates clr_pc to clear PC and sets ‘Fetch as the next
state of the machine. In the ‘Fetch state, pc_on_adr, rd_mem,
data_on_dbus, ld_ir, and inc_pc become active, and ‘Decode is set to
become the next state of the machine. By activating pc_on_adr and
rd_mem, the PC output goes on the memory address and a read opera-
tion is issued. Assuming the memory responds in the same clock, con-
tents of memory at the PC address will be put on data_bus. Issuance of
data_on_dbus puts the contents of this bus on the internal dbus of
DataPath. This bus is connected to the input of IR and issuance of ld_ir
loads its contents into this register. The next state of the controller is
‘Decode that makes the new contents of IR available for the controller.
In the ‘Execute state a newly fetched instruction in IR decides on con-
trol signals to issue to execute the instruction.

In the ‘Execute state, op_code is used in a case expression to decide on
control signals to issue depending on the opcode of the fetched instruction.
The case alternatives in this statement are four op_code values of 00, 01,
10, and 11 that correspond to Load, Store, Jump, and Add instructions.

For load, ir_on_adr, rd_mem, data_on_dbus, and ld_ac are issued.
These control signals cause the address from IR to be placed on the

RT Level Design and Test 273

274 Chapter Eight

Figure 8.23 Controller Verilog Code

`define Reset 2’b00
`define Fetch 2’b01
`define Decode 2’b10
`define Execute 2’b11
module Controller (input reset, clk, input [1:0] op_code,

output reg rd_mem, wr_mem, ir_on_adr,
pc_on_adr, dbus_on_data,
data_on_dbus, ld_ir, ld_ac,
ld_pc, inc_pc, clr_pc,
pass, add, alu_on_dbus);

reg [1:0] present_state, next_state;

always @(posedge clk)
if(reset) present_state <= `Reset;
else present_state <= next_state;

always @(present_state or reset) begin : Combinational
rd_mem=1’b0; wr_mem=1’b0; ir_on_adr=1’b0; pc_on_adr=1’b0;
dbus_on_data=1’b0; data_on_dbus=1’b0; ld_ir=1’b0;
ld_ac=1’b0; ld_pc=1’b0; inc_pc=1’b0; clr_pc=1’b0;
pass=0; add=0; alu_on_dbus=1’b0;

case (present_state)
`Reset : begin next_state = reset ? `Reset : `Fetch;

clr_pc = 1;
end // End `Reset
`Fetch : begin next_state = `Decode;

pc_on_adr = 1; rd_mem = 1; data_on_dbus = 1;
ld_ir = 1; inc_pc = 1;

end // End `Fetch
`Decode : next_state = `Execute; // End `Decode

`Execute: begin next_state = `Fetch;
case(op_code)

2’b00: begin
ir_on_adr = 1; rd_mem = 1;
data_on_dbus = 1; ld_ac = 1;

end
2’b01: begin

pass = 1;
ir_on_adr = 1; alu_on_dbus = 1;
dbus_on_data = 1; wr_mem = 1;

end (Continued)

addr_bus address bus, memory read to take place, and data from
memory to be loaded into AC. Data from the memory come through
data_bus onto dbus of DataPath by the control signal data_on_dbus.

Controller executes the Store instruction by issuing pass, ir_on_adr,
alu_on_dbus, dbus_on_data, and wr_mem. As shown in Fig. 8.19, these
signals take contents of AC to the input bus of the memory (i.e.,
data_bus), and wr_mem causes the writing into the memory to take
place. Note that pass causes AC to pass through ALU unchanged.

The Jump instruction is executed by enabling PC load input, which
takes the jump address from IR (see Fig. 8.19).

The last instruction of this machine is Add, for execution of which,
add, alu_on_dbus, and ld_ac are issued. This instruction adds data in
the upper six bits of IR with AC and loads the result into AC. The add
control signal instructs ALU to add its two inputs; the alu_on_dbus
puts this output on the internal datapath dbus; and the ld_ac causes AC
to be loaded with the result of addition.

8.2.6.4 The complete machine. The top-level module for our adding
machine example is shown in Fig. 8.24. In the AddingCPU module
shown, DataPath and Controller modules are instantiated. Port con-
nections of the Controller include its output control signals, the opcode
input from DataPath and the reset external input. Port connections of
DataPath consist of adr_bus and data_bus external busses, opcode
output, and control signal inputs.

8.2.7 Testing adding CPU

In the testbench for the AddingCPU module, we model a simple memory
with read and write operations. The memory is file-based and we will

RT Level Design and Test 275

Figure 8.23 Controller Verilog Code (Continued)

2’b10: ld_pc = 1;
2’b11: begin

add = 1; alu_on_dbus = 1; ld_ac = 1;
end

endcase
end // End `Execute
default : next_state = `Reset;

endcase
end

endmodule

use file I/O tasks for reading and writing from and to the memory. To
make this testbench more complete, we use a task for converting instruc-
tions in mnemonic form from an external file to binary memory data.
In general, memory modeling and file I/O are elaborated in the testbench
of AddingCPU.

8.2.7.1 Testbench outline. The outline of the testbench is shown in
Fig. 8.25. This module reads the InstructionFile.mem file which contains
instruction mnemonics and their addresses, converts them to hex and
writes them to HexadecimalFile.mem file. After this conversion is done,
every addressed memory read or write uses the hex file. Because the unit
under test (UUT) does not have a large memory, all read and write oper-
ations are directly performed on the HexadecimalFile.mem file, and no
image of its memory is kept in the testbench as a fast buffer as an array
of reg. The processor of the next section uses such a memory buffering
scheme for faster memory input-output operations.

As shown in Fig. 8.25, after declarations and instantiation of
AddingCPU, an initial block calls the Convert task to read the instruc-
tion file (InstructionFile.mem), translate instruction mnemonics to hex,
and write hex data in the HexadecimalFile.mem file. Following the invo-
cation of Convert, the testbench opens the HexadecimalFile.mem file for

276 Chapter Eight

Figure 8.24 Adding CPU Top-Level Module

module AddingCPU (input reset, clk,
output [5:0] adr_bus, output rd_mem, wr_mem,
inout [7:0] data_bus);

wire ir_on_adr, pc_on_adr, dbus_on_data, data_on_dbus,
ld_ir,
ld_ac, ld_pc, inc_pc, clr_pc, pass, add, alu_on_dbus;

wire [1:0] op_code;

Controller cu (reset, clk, op_code, rd_mem, wr_mem, ir_on_adr,
pc_on_adr, dbus_on_data, data_on_dbus, ld_ir,
ld_ac, ld_pc, inc_pc, clr_pc, pass,
add, alu_on_dbus);

DataPath dp (ir_on_adr, pc_on_adr, dbus_on_data, data_on_dbus,
ld_ir, ld_ac, ld_pc, inc_pc, clr_pc, pass, add,
alu_on_dbus, clk, adr_bus, op_code, data_bus);

endmodule

read and write, and sets the end of the simulation run time. The $fopen
task opens this hex file and assigns the HexFile descriptor that is a
declared integer to it. The $fclose task closes this file just before the
simulation run is stopped.

This initial block is followed by the Memory_Read_Write always block.
This block assumes 64 8-bit hex data are available in HexadecimalFile.mem.
For accessing this file, its descriptor HexFile, will be used.

Figure 8.26 shows the details of Memory_Read_Write always block.
After a short delay (1 ns) after the posedge of clk, rd_mem and wr_mem
are expected to be stable. At this time, if rd_mem is 1, data on adr_bus

RT Level Design and Test 277

Figure 8.25 Outline of Adding CPU Testbench

module Test_AddingCPU;
reg reset=1, clk=0;
wire [5:0] adr_bus;
wire rd_mem, wr_mem;
wire [7:0] data_bus;
reg [7:0] mem_data=8’b0;
reg control=0;
integer HexFile, check;

AddingCPU UUT (reset, clk, adr_bus, rd_mem, wr_mem, data_bus);

always #10 clk = ~clk;

initial begin
Convert;
HexFile = $fopen (“HexadecimalFile.mem”, “r+”);
#25 reset=1’b0;
#405 $fclose (HexFile);
$stop;

end

always @(posedge clk) begin : Memory_Read_Write
// . . .

end

// . . .

task Convert;
// . . .

endtask
endmodule

is used to set the position of the next read from HexFile. Since data in
HexadecimalFile.mem are in hex (2 bytes), a total of 4 bytes that include
two “end of line” bytes are used for each memory entry. Therefore,
$fseek of Fig. 8.26 positions the next reading from 4*adr_bus. The
$fscanf task that follows this task reads the hex data at the file posi-
tion into mem_data. This variable is local to the testbench and is put
on data_bus only when reading from the memory is to take place. The
control variable is used to drive data_bus with mem_data or 8’hZZ.

The next part of the always block of Fig. 8.26 handles writing into
the memory. For this purpose, after file positioning, the $fwrite task
writes contents of data_bus into HexadecimalFile.mem. After every
writing $fflush writes any buffered output to this file.

The testbench outline of Fig. 8.25 shows the convert task that is
used for converting instruction mnemonics of InstructionFile.mem
to hex data in HexadecimalFile.mem. Figure 8.27 shows six lines of
InstructionFile.mem and its corresponding hex translation in memory
locations 0 to 15.

The Convert task reads a line of InstructionFile.mem that contains a
memory location, its mnemonic, and the instruction operand. This task
converts this line to an opcode and its data and writes it in its specified
location in HexadecimalFile.mem. For example, the third line of the

278 Chapter Eight

Figure 8.26 Memory Read and Write

always @(posedge clk) begin : Memory_Read_Write
control = 0;
#1;
if (rd_mem) begin

#1;
check = $fseek (HexFile, 4 * adr_bus, 0);
check = $fscanf (HexFile, “%h”, mem_data);
control = 1;

end
if (wr_mem) begin

#1;
check = $fseek (HexFile, 4 * adr_bus, 0);
$fwrite (HexFile, “%h”, data_bus);
$fflush (HexFile);

end
end

assign data_bus = (control) ? mem_data: 8’hZZ;

instruction file of Fig. 8.27 (sta 0A) is translated to 4A and is put in loca-
tion 1 of the hexadecimal file. For direct memory data, the instruction
file uses the “:::” notation. 0F ::: 0f shown in Fig. 8.27 is translated to
data 0f in location 15 of the hexadecimal file.

The Convert task is shown in Fig. 8.28. Initially all locations of
HexadecimalFile.mem are initialized to “00”. The InstructionFile.mem
is opened for reading, (i.e., with r argument), and HexadecimalFile.mem
is opened for reading and writing, (i.e., with r+ argument) file descrip-
tors for these two files are InstFile and HexFile, respectively.

Convert has a while loop that reads data from InstFile, converts it to
hex and puts it in its corresponding location in HexFile. The $fscanf task,
shown in this while, reads the first two hex digits of a line of instruc-
tion into addr. This variable is then used for setting the write position
for the HexFile file. This file positioning is done by $fseek. This is fol-
lowed by $fgets that reads the opcode string from the instruction file
(InstFile). A case statement in Convert translates string opcodes to their
hex equivalent, and an $fwrite task writes this hex data into the hex
file (HexFile) at the location set by the $fseek task.

If the opcode string read from InstFile is “:::”, the hex data that fol-
lows this string will be written into HexFile location specified by addr.
The last part of Convert flushes HexFile and closes both instruction and
hexadecimal files.

The testbench discussed above tests AddingCPU for all its instruc-
tions. This example shows the power and flexibility of Verilog file han-
dling tasks for testbench development. In modeling larger memories,

RT Level Design and Test 279

InstructionFile HexadecimalFile

Line: Location:
 1: 00 lda 0f 00: 0F
 2: 0f ::: 0f 01: 4A
 3: 01 sta 0a 02: C1
 4: 02 add 01 03: 4B
 5: 03 sta 0b 04: 80
 6: 04 jmp 00 06: 00
 07: 00
 08: 00
 09: 00
 10: 00
 11: 00
 12: 00
 13: 00
 14: 00

15: 0F

Figure 8.27 Instruction Mnemonics and Hex Memory Data

280 Chapter Eight

Figure 8.28 Converting Instructions to Hex

task Convert;
begin: block

reg [5: 0] addr;
reg [3 * 8: 1] opCode;
reg [7: 0] data, writeData;
reg JustData;
integer i, HexFile, InstFile, check;
HexFile = $fopen (“HexadecimalFile.mem”);
for (i = 0; i < 64; i = i + 1) $fwrite (HexFile, “00\n”);

$fflush (HexFile); $fclose (HexFile);

InstFile = $fopen (“InstructionFile.mem”, “r”);
HexFile = $fopen (“HexadecimalFile.mem”, “r+”);

while ($fscanf (InstFile, “%h”, addr) != -1) begin
check = $fseek (HexFile, addr * 4, 0);
check = $fgets (opCode, InstFile);
JustData = 0;
case (opCode)

“lda”: writeData[7: 6] = 0;
“sta”: writeData[7: 6] = 1;
“jmp”: writeData[7: 6] = 2;
“add”: writeData[7: 6] = 3;
“:::”: begin

JustData = 1;
check = $fscanf (InstFile, “%h”, writeData);

end
default: begin

JustData = 1;
check = $fscanf (InstFile, “%h”, writeData);

end
endcase

if(JustData == 0) begin
check = $fscanf (InstFile, “%h”, data);
writeData[5: 0] = data[5: 0];

end
$fwrite(HexFile, “%h”, writeData);

end

$fflush (HexFile); $fclose (HexFile); $fclose(InstFile);
end

endtask

direct file read and write become inefficient and more elaborate memory
and related file handling should be done. The next section shows a
larger CPU with a more complete memory model.

8.3 CPU Design and Test

This section shows design, description, and test of a small processor in
Verilog. The CPU is simple architecture, yet enough hardware (SAYEH)
that has been designed for educational and benchmarking purposes.
The design is simple, and follows the design strategy used for the Adding
CPU of the previous section. For a better understanding of the material
presented here, the reader is expected to have a general understanding
of computer architectures.

8.3.1 Details of processor functionality

The simple CPU example discussed here has a register file that is used
for data processing instructions. The CPU has a 16-bit data bus and a
16-bit address bus. The processor has 8 and 16-bit instructions. Short
instructions contain shadow instructions, which effectively pack two
such instructions into a 16-bit word. Figure 8.29 shows SAYEH inter-
face signals.

8.3.1.1 CPU components. SAYEH uses its register file for most of its
data instructions. Addressing modes of this processor also take advan-
tage of this structure. Because of this, the addressing hardware of
SAYEH is a simple one and the register file output is used in address
calculations.

SAYEH components that are used by its instructions include the stan-
dard registers such as the Program Counter, Instruction Register, the
Arithmetic Logic Unit, and Status Register. In addition, this processor

RT Level Design and Test 281

SAYEH

Databus

Addressbus

ReadMem

WriteMem

ReadIO

WriteIO

ExternalReset

MemDataready

Clk

Figure 8.29 SAYEH Interface

has a register file forming registers R0, R1, R2, and R3 as well as a
Window Pointer that defines R0, R1, R2, and R3 within the register file.
CPU components and a brief description of each are shown below.

PC. Program Counter, 16 bits

R0, R1, R2, and R3. General purpose registers part of the register file,
16 bits

Reg file. The general purpose registers form a window of 4 in a reg-
ister file of 8 registers

WP. Window Pointer points to the register file to define R0, R1, R2,
and R3, 3 bits

IR. Instruction Register that is loaded with a 16-bit, an 8-bit, or two
8-bit instructions, 16 bits

ALU. The ALU that can AND, OR, NOT, Shift, Compare, Add,
Subtract, and Multiply its inputs, 16 bit operands

Z flag. Becomes 1 when the ALU output is 0

C flag. Becomes 1 when the ALU has a carry output

8.3.1.2 SAYEH instructions. The general format of 8-bit and 16-bit
SAYEH instructions is shown in Fig. 8.30. The 16-bit instructions have
the Immediate field and the 8-bit instructions do not. The OPCODE
filed is a 4-bit code that specifies the type of instruction. The Left and
Right fields are two bit codes selecting R0 through R3 for source and/or
destination of an instruction. Usually, Left is used for destination and
Right for source. The Immediate field is used for immediate data, or if
two 8-bit instructions are packed, it is used for the second instruction.

Our processor has a total of 29 instructions as shown in Table 8.1.
Instructions with the “I ” immediate field indicator are 16-bit instructions
and the rest are 8-bit instructions. Instructions that use the Destination
and Source fields (designated by D and S in the table of instruction set)
have an opcode that is limited to 4 bits. Instructions that do not require
specification of source and destination registers use these fields as
opcode extensions. Because of this, our processor has room for extend-
ing its instruction set beyond what is shown in Table 8.1. In addition to
nop, hex code 0F is used as filler for the right most 8-bits of a 16-bit word
that only contains an 8-bit instruction in its 8 left-most bits.

282 Chapter Eight

15 12 11 10 09 08 07 00

ImmediateOPCODE Left Right

Figure 8.30 SAYEH Instruction Format

In the instruction set, addressed locations in the memory are indicated
by enclosing the address in a set of parenthesis. When these instructions
are executed, the processor issues ReadMem or WriteMem signals to the
memory. When input and output instructions (inp, oup) are executed,
SAYEH issues ReadIO or WriteIO signals to its IO devices.

8.3.2 SAYEH datapath

The datapath of SAYEH is shown in Fig. 8.31. Main components and
their lower-level structures are listed below.

1. Addressing Unit
a. Program counter (PC)
b. Address Logic

2. Instruction register (IR)
3. Window pointer (WP)

RT Level Design and Test 283

TABLE 8.1 Instruction Set of SAYEH

Instruction mnemonic Bits RTL notation:
and definition 15:0 comments or condition

nop No operation 0000-00-00 No operation
hlt Halt 0000-00-01 Halt, fetching stops
szf Set zero flag 0000-00-10 Z <= ‘1’
czf Clr zero flag 0000-00-11 Z <= ‘0’
scf Set carry flag 0000-01-00 C <= ‘1’
ccf Clr carry flag 0000-01-01 C <= ‘0’
cwp Clr Window pointer 0000-01-10 WP <= “000”
mvr Move Register 0001-D-S RD <= RS

lda Load Addressed 0010-D-S RD <= (RS)
sta Store Addressed 0011-D-S (RD) <= RS

inp Input from port 0100-D-S In from port RS and write to RD

oup Output to port 0101-D-S Out to port RD from RS

and AND Registers 0110-D-S RD <= RD & RS

orr OR Registers 0111-D-S RD <= RD | RS

not NOT Register 1000-D-S RD <= ~RS

shl Shift Left 1001-D-S RD <= sla RS

shr Shift Right 1010-D-S RD <= sra RS

add Add Registers 1011-D-S RD <= RD + RS + C
sub Subtract Registers 1100-D-S RD <= RD − RS − C
mul Multiply Registers 1101-D-S RD <= RD * RS :8-bit multiplication
cmp Compare 1110-D-S RD, RS (if equal:Z=1; if RD<RS: C=1)
mil Move Immediate Low 1111-D-00-I RDL <= {8’bZ, I}
mih Move Immediate High 1111-D-01-I RDH <= {I, 8’bZ }
spc Save PC 1111-D-10-I RD <= PC + I
jpa Jump Addressed 1111-D-11-I PC <= RD + I
jpr Jump Relative 0000-01-11-I PC <= PC + I
brz Branch if Zero 0000-10-00-I PC <= PC + I :if Z is 1
brc Branch if Carry 0000-10-01-I PC <= PC + I :if C is 1
awp Add window pointer 0000-10-10-I WP <= WP + I

M E M O R Y

PC

IR

W
P

Flags

D
atabus

3
/

/ 8

/8

/ 16

/16

/ 16

16
/

16
/

/16

3
/

CONTROLLER

8
/

/ 16

16

/ 16

Addressing Logic

4
/

Address_on_Databus

ALUout_on_Databus

RFright_on_OpndBus
IR_on_LOpndBus

ResetPC
PCplusI
PCplus1
R0plusI

IRload

WPadd
WPreset

Z
R

es
et

RFLwrite

Address

OpndBus

IRout[2:0]

ReadMem
WriteMem

Cout
Zout Arithmetic Unit

Address Logic

Register File

8 × 16 Bit

C
Se

t
C

R
es

et
Z

Se
t

SR
lo

ad

ZinCin

RD

A B

RightLeft

RD_on_AddressUnitRSide

RS_on_AddressUnitRSide

R0plus0

RFHwrite

RSide

B15to0
AandB

ShrB
AcmpB
AmulB
AsubB
AaddB
NotB
AorB

ShlB

External_Reset
MemDataReady

Zout
Cout

Shadow

IR[11:8]

IR[3:0]

MemDataReady

Shadow

IR_on_HOpndBus
Opnd[15:8]

Opnd[7:0]
AddressUnitRSideBus

Decoders

IR
[1

5:
8]

IR[15:0]

Shadow

RS

IR
[7

:0
]

Sayeh

Sayeh

Figure 8.31 SAYEH datapath

284

4. Register File
c. Decoder1 (Left)
d. Decoder2 (Right)

5. Arithmetic logic unit (ALU)
6. Flags

As shown in Fig. 8.31, components are either hardwired or connected
through three-state busses. Component inputs with multiple sources,
such as the right-hand side input of ALU, use three-state buses. Three-
state busses in this structure are Dastabus and OpndBus. Names shown
on component interconnections are used in the Verilog description of the
processor. In this figure, signals that are in italic are control signals
issued by the controller. These signals control register clocking, logic unit
operations and placement of data in busses.

8.3.2.1 Datapath components. Figure 8.32 shows the hierarchical struc-
ture of SAYEH components. The processor has a Datapath and a
Controller. Datapath components are Addressing Unit, Instruction
Register, Window Pointer, Register File, Arithmetic Logic Unit, and the
Flags register. The Addressing Unit is further partitioned into the
Program Counter and Address Logic.

The Addressing Logic is a combinational circuit that is capable of
adding its inputs to generate a 16-bit output that forms the address for
the processor memory. The Program Counter and Instruction Register
are 16-bit registers. The Register File is a 2-port memory and a file of 8,
16-bit registers. The Window Pointer is a 3-bit register that is used as
the base of the Register File. Specific registers for read and write (R0,
R1, R2, or R3) in the Register File are selected by its 4-bit input bus
coming from the Instruction Register. 2 bits are used to select a source
register and the other 2 bits select the destination register.

When the Window Pointer is enabled, it adds its 3-bit input to its cur-
rent input. The Flags register is a 2-bit register that saves the flag out-
puts of the Arithmetic Unit. The Arithmetic Unit is a 16-bit arithmetic
and logic unit that has the functions, as shown in Table 8.2. A 9-bit
input selects the function of the ALU shown in this table. This code is
provided by the processor controller.

Controller of SAYEH has eleven states for reset, fetch, decode, exe-
cute, and halt operations. Signals generated by the controller control
logic unit operations and register clocking in the datapath.

SAYEH sequential data components and its controller are triggered
on the falling edge of the main system clock. Control signals remain
active after one falling edge through the next. This duration allows for
propagation of signals through the busses and logic units in the data-
path.

RT Level Design and Test 285

286 Chapter Eight

TABLE 8.2 ALU Operations

Mnemonic Description Code

B15to0H Place B on the output 1000000000
AandBH Place A and B on the output 0100000000
AorBH Place A or B on the output 0010000000
notBH Place not B on the output 0001000000
shlBH Shift B one bit to the left 0000100000
shrBH Shift B one bit to the right 0000010000
AaddBH Place A + B on the output 0000001000
AsubBH Place A − B on the output 0000000100
AmulBH Place A * B on the output 0000000010
AcmpBH Z = 1 if A = B; C = 1 if A < B 0000000001

SAYEH

Datapath

Addressing Unit

Instruction Register

Window Pointer

Register File

Arithmetic Logic Unit

Flags

Address Logic

Program Counter

Controller

Figure 8.32 SAYEH Hierarchical Structure

8.3.3 SAYEH Verilog description

SAYEH is described according to the hierarchical structure of Fig. 8.32.
Data components are described separately, and then wired to form the
datapath. The controller is described in a single Verilog module. In the
complete SAYEH description, the datapath and controller are wired
together.

8.3.3.1 Data components. Combinational and sequential SAYEH data
components are described here. The combinational ones are like the
ALU that perform arithmetic and logical operations. The function of such
units is controlled by the controller. The sequential components are
clocked with the negative edge of the main CPU clock. These components
have functionalities like loading and resetting that are controlled by the
controller.

Addressing unit. The Addressing Unit, shown in Fig. 8.33, consists of
the PC and Address Logic. The PC is a simple register with enabling and
resetting mechanisms, while the Address Logic is a small arithmetic unit
that performs adding and incrementing for calculating PC or memory
addresses.

This unit has a 16-bit input coming from the Register File, an 8-bit input
from the Instruction Register, and a 16-bit address output. Control sig-
nals of the Addressing Unit are ResetPC, PCplusI, PCplus1, RplusI,
Rplus0, and PCenable. These control signals select what goes on the
output of this unit. Shown in Fig. 8.34 is the Verilog code of the PC. The
Address Logic of Fig. 8.35 uses control signal inputs of the Addressing Unit
to generate input data to the Program Counter via the PCout of Fig. 8.33.

Arithmetic unit. The ALU of SAYEH is shown in Fig. 8.36. For read-
ability, control input codes of this unit are defined according to their func-
tion. For example, the select input that causes the ALU to perform the
add operation is 0000001000, and it is defined as AaddBH. Control

RT Level Design and Test 287

Figure 8.33 AddressingUnit Verilog Code

module AddressingUnit (
input [15:0], Rside, input [7:0] Iside, output [15:0] Address,
input clk, ResetPC, PCplusI, PCplus1, RplusI, Rplus0, PCenable);

wire [15:0] PCout;
ProgramCounter PC (Address, PCenable, clk, PCout);
AddressLogic AL (PCout, Rside, Iside, Address, ResetPC,

PCplusI, PCplus1, RplusI, Rplus0);
Endmodule

inputs of this unit are B15to0, AandB, AorB, notB, shlB, shrB, AaddB,
AsubB, AmulB, and AcmpB that select its various operations. In order
to insure that no unwanted latches are made, all ALU outputs are set
to their inactive values at the beginning of the always statement of its
Verilog code. In a case-statement in this code, aluout and its flag out-
puts are set according to the selected control input of the ALU.

Instruction register. SAYEH Instruction Register is shown in Fig. 8.37.
This unit is a 16-bit register with an active high load-enable input. As
shown the only control input of the InstructionRegister module is IRload.

Register file. Figure 8.38 shows the Verilog code of SAYEH Register
File. This is a 2-port memory with a moving window pointer. For reading

288 Chapter Eight

Figure 8.35 AddressLogic Verilog Code

module AddressLogic (input [15:0] PCside, Rside,
input [7:0] Iside,
input ResetPC, PCplusI, PCplus1, RplusI,

Rplus0,
output reg [15:0] ALout);

always @ (PCside or Rside or Iside or ResetPC or
PCplusI or PCplus1 or RplusI or Rplus0)

case ({ResetPC, PCplusI, PCplus1, RplusI, Rplus0})
5’b10000: ALout = 0;
5’b01000: ALout = PCside + Iside;
5’b00100: ALout = PCside + 1;
5’b00010: ALout = Rside + Iside;
5’b00001: ALout = Rside;
default: ALout = PCside;

endcase

endmodule

Figure 8.34 ProgramCounter Verilog Code

module ProgramCounter (
input [15:0] in, input enable, clk, output reg [15:0] out);

always @ (negedge clk) if (enable) out = in;

endmodule

RT Level Design and Test 289

Figure 8.36 ArithmeticUnit Verilog Code

`define B15to0H 10’b1000000000
`define AandBH 10’b0100000000
`define AorBH 10’b0010000000
`define notBH 10’b0001000000
`define shlBH 10’b0000100000
`define shrBH 10’b0000010000
`define AaddBH 10’b0000001000
`define AsubBH 10’b0000000100
`define AmulBH 10’b0000000010
`define AcmpBH 10’b0000000001

module ArithmeticUnit (A, B,
B15to0, AandB, AorB, notB, shlB, shrB, AaddB, AsubB,
AmulB, AcmpB, aluout, cin, zout, cout);

input [15:0] A, B;
input B15to0, AandB, AorB, notB, shlB, shrB,

AaddB, AsubB, AmulB, AcmpB;
input cin;
output [15:0] aluout;
output zout, cout;
reg [15:0] aluout;
reg zout, cout;

always @(A or B or B15to0 or AandB or AorB or notB or shlB or
shrB or AaddB or AsubB or AmulB or AcmpB or cin)

begin
zout = 0; cout = 0; aluout = 0;
case ({B15to0, AandB, AorB, notB, shlB,

shrB, AaddB, AsubB, AmulB, AcmpB})
`B15to0H:aluout = B;
`AandBH: aluout = A & B;
`AorBH: aluout = A | B;
`notBH: aluout = ~B;
`shlBH: aluout = {B[15:0], B[0]};
`shrBH: aluout = {B[15], B[15:1]};
`AaddBH: {cout, aluout} = A + B + cin;
`AsubBH: {cout, aluout} = A - B - cin;
`AmulBH: aluout = A[7:0] * B[7:0];
`AcmpBH: begin

aluout = A;
if (A> B) cout = 1; else cout = 0;
if (A==B) zout = 1; else zout = 0;

end (Continued)

290 Chapter Eight

Figure 8.37 InstructionRegister Verilog Code

module InstrunctionRegister (in, IRload, clk, out);
input [15:0] in;
input IRload, clk;
output [15:0] out;
reg [15:0] out;

always @(negedge clk) if (IRload == 1) out <= in;
endmodule

Figure 8.38 RegisterFile Verilog Code

module RegisterFile (input [15:0] in,
input clk, RFLwrite, RFHwrite,
input [1:0] Laddr, Raddr, input [2:0] Base,
output [15:0] Lout, Rout);

reg [15:0] MemoryFile [0:7];
wire [2:0] Laddress = Base + Laddr;
wire [2:0] Raddress = Base + Raddr;

assign Lout = MemoryFile [Laddress];
assign Rout = MemoryFile [Raddress];

reg [15:0] TempReg;

always @(negedge clk) begin
TempReg = MemoryFile [Laddress];
if (RFLwrite) TempReg [7:0] = in [7:0];
if (RFHwrite) TempReg [15:8] = in [15:8];
MemoryFile [Laddress] = TempReg;

end
endmodule

Figure 8.36 ArithmeticUnit Verilog Code (Continued)

default: aluout = 0;
endcase
if (aluout == 0) zout = 1’b1;

end

endmodule

from the memory, the base of the window pointer (Base) is added to the
left and right addresses (Laddress and Raddress) and memory words are
read on appropriate left and right outputs (Lout and Rout). Writing into
the memory is done in the location pointed by its left address (left is used
for instruction destinations). The RFLwrite and RFHwrite control sig-
nals decide whether a write is done to the low order or the high order
bits of the Register File. If both these signals are active, writing is done
in a 16-bit word addressed by Laddress plus Base.

8.3.3.2 SAYEH datapath. Figure 8.39 shows the datapath of SAYEH
module. This module specifies component instantiations and bussing
structure of the CPU according to the diagram of Fig. 8.31. Inputs of this
module are the processor’s data and address busses, as well as control
signals that are provided by the controller of the CPU. Control signals
shown in the DataPath module are routed to the instantiated data com-
ponents or to the internal buses that are specified in this module.

Following the declarations, the DataPath module instantiates
Addressing Unit, Arithmetic Unit, Register File, Instruction Register,
Status Register, and the Window Pointer. Control signals that are inputs
of the DataPath are passed from this module to the data components via
their port connections. For example, ResetPC that is an input of
DataPath and a control signal of AddressingUnit appears on the port
list of AddressingUnit in its instantiation statement.

The part that follows module instantiations makes bus assignments to
the internal buses of this module. For example, assignment of the output
of ArithmeticUnit to Databus that is controlled by ALU_on_Databus is
done by an assign statement with a right-hand side that is a conditional
expression. Note the assignment of 16'bZZZZZZZZZZZZZZZZ to Databus
when none of the control signals of this bus are active.

In the last part of the DataPath module, bits of IR that indicate source
and destination registers to the Register File are placed on Laddr and
Raddr inputs of this register. The Shadow signal becomes 1 if a shadow
instruction being executed is used to select appropriate bits of the IR as
source and destination addresses.

8.3.3.3 SAYEH controller. The controller of SAYEH is a state machine
with nine states that issues appropriate control signals to the Data
Path. The controller uses the Huffman style of coding, in which the
state machine has a large combinational part that is responsible for state
transitions and issuing controller outputs. State transitions are done by
setting next state values to the Nstate variable of reg type. Figure 8.40
shows a general outline of this controller. Various sections of this out-
line are discussed below.

RT Level Design and Test 291

292 Chapter Eight

Figure 8.39 SAYEH DataPath Module

module DataPath (
clk, Databus, Addressbus,
ResetPC, PCplusI, PCplus1, RplusI, Rplus0,
Rs_on_AddressUnitRSide, Rd_on_AddressUnitRSide, EnablePC,
B15to0, AandB, AorB, notB, shlB, shrB,
AaddB, AsubB, AmulB, AcmpB,
RFLwrite, RFHwrite,
WPreset, WPadd, IRload, SRload, Address_on_Databus,
ALU_on_Databus,
IR_on_LOpndBus, IR_on_HOpndBus, RFright_on_OpndBus,
Cset, Creset, Zset, Zreset, Shadow, Instruction, Cout, Zout);

input clk;
inout [15:0] Databus;
output [15:0] Addressbus, Instruction;
output Cout, Zout;
input

ResetPC, PCplusI, PCplus1, RplusI, Rplus0,
Rs_on_AddressUnitRSide, Rd_on_AddressUnitRSide, EnablePC,
B15to0, AandB, AorB, notB, shlB, shrB,
AaddB, AsubB, AmulB, AcmpB,
RFLwrite, RFHwrite, WPreset, WPadd, IRload, SRload,
Address_on_Databus, ALU_on_Databus, IR_on_LOpndBus,
IR_on_HOpndBus, RFright_on_OpndBus,
Cset, Creset, Zset, Zreset, Shadow;

wire [15:0] Right, Left, OpndBus, ALUout, IRout, Address,
AddressUnitRSideBus;

wire SRCin, SRZin, SRZout, SRCout;
wire [2:0] WPout;
wire [1:0] Laddr, Raddr;

AddressingUnit AU (AddressUnitRSideBus, IRout[7:0], Address,
clk, ResetPC, PCplusI, PCplus1, RplusI,
Rplus0, EnablePC);

ArithmeticUnit AL (Left, OpndBus, B15to0, AandB, AorB, notB,
shlB, shrB, AaddB, AsubB, AmulB, AcmpB,
ALUout, SRCout, SRZin, SRCin);

RegisterFile RF (Databus, clk, Laddr, Raddr, WPout, RFLwrite,
RFHwrite, Left, Right);

InstrunctionRegister IR (Databus, IRload, clk, IRout);
StatusRegister SR (SRCin, SRZin, SRload, clk, Cset, Creset,

Zset, Zreset, SRCout, SRZout);
WindowPointer WP (IRout[2:0], clk, WPreset, WPadd, WPout);

(Continued)

Controller ports. The instruction register output, ALU flags, and exter-
nal control signals constitute the inputs of the controller. The outputs
of the controller are 38 control signals going to the Data Path and a
Shadow output that indicates that the controller is handling a shadow
instruction. As shown in Fig. 8.40, controller outputs are declared as reg
and are assigned values in the combinational always block of the con-
troller module.

Control states. A parameter declaration declares the nine states of the
controller. States reset and halt are for the initial state of the machine
and its halt state, respectively. In state fetch the machine begins fetch-
ing a 16-bit instruction that can include an 8-bit instruction and a
shadow. State memread is entered while our controller is waiting for
memDataReady signal from the memory indicating that its data is
ready. Execution of instructions is performed in the exec1 state. This
state is entered from the memread state. The lda instruction is not com-
pleted by the exec1 state and requires the additional state of exec1lda
to complete its memory read. States exec2 and exec2lda are like exec1

RT Level Design and Test 293

Figure 8.39 SAYEH DataPath Module (Continued)

assign AddressUnitRSideBus = (Rs_on_AddressUnitRSide) ?
right :
(Rd_on_AddressUnitRSide) ?
Left :
16’bZZZZZZZZZZZZZZZZ;

assign Addressbus = Address;
assign Databus = (Address_on_Databus) ? Address :

(ALU_on_Databus) ? ALUout :
16’bZZZZZZZZZZZZZZZZ;

assign OpndBus[07:0] = IR_on_LOpndBus == 1 ? IRout[7:0] :
8’bZZZZZZZZ;

assign OpndBus[15:8] = IR_on_HOpndBus == 1 ? IRout[7:0] :
8’bZZZZZZZZ;

assign OpndBus = RFright_on_OpndBus == 1 ? Right :
16’bZZZZZZZZZZZZZZZZ;

assign Zout = SRZout;
assign Cout = SRCout;
assign Instruction = IRout[15:0];

assign Laddr = (~Shadow) ? IRout[11:10] : IRout[3:2];
assign Raddr = (~Shadow) ? IRout[09:08] : IRout[1:0];

endmodule

Figure 8.40 SAYEH Controller General Outline

module controller (ExternalReset, clk, ResetPC, PCplusI,
PCplus1, RplusI, Rplus0, . . .);

input ExternalReset, clk, . . .
output ResetPC, PCplusI, PCplus1, RplusI, Rplus0, . . .
reg ResetPC, PCplusI, PCplus1, RplusI, Rplus0, . . .
parameter [3:0]

reset = 0, halt = 1, fetch = 2, memread = 3,
exec1 = 4, exec2 = 5,
exec1lda = 6, exec2lda = 7, incpc = 8;

parameter nop = 4’b0000;
parameter hlt = 4’b0001;
parameter szf = 4’b0010;
. . .
reg [3:0] Pstate, Nstate;

wire ShadowEn = ~(Instruction[7:0] == 8’b000011111)
always @(Instruction or Pstate or ExternalReset or

Cflag or Zflag or memDataReady) begin
ResetPC = 1’b0;
PCplusI = 1’b0;
PCplus1 = 1’b0;
RplusI = 1’b0;
Rplus0 = 1’b0;
. . .
case (Pstate)

reset :
. . .
halt :
. . .
fetch :
. . .
memread :
. . .
exec1 :
. . .
exec1lda :
. . .
exec2 :
. . .
exec2lda :
. . .
incpc :
. . .
default: Nstate = reset;

endcase
end

always @ (negedge clk) Pstate = Nstate;
endmodule

294

and exec1lda except that they handle the shadow part of an instruction.
The execute state of most instructions (exec1 or exec2) increments the pro-
gram counter while the instruction is being executed. However, certain
instructions that use the address bus for their execution cannot increment
PC while they are being executed. For these instructions, the incpc state
increments the program counter.

Opcodes. Referring to Fig. 8.40, instruction opcodes are declared as
4-bit parameters in the controller of SAYEH. These parameters are
according to the processor’s instruction set of Table 8.1.

State declarations. As mentioned, the coding style of the controller is
according to the Huffman style of coding discussed in Chap. 5. The next
state and present states, required by this style of coding, are declared
in the controller of SAYEH as 4-bit registers, Nstate, and Pstate.

Shadow instructions. The ShadowEn signal that is internal to the con-
troller is set when the hex code 0F (this code indicates that the right-
most bits are not used) is not found in the right-most 8 bits of a 16-bit
instruction. If this wire is 1 and execution of an 8-bit instruction is com-
plete, the controller branches to exec2 to execute the second half of the
instruction before the next fetching begins.

Combinational block. The combinational block of SAYEH controller has
an always block that has a main case statement with case choices for
every state of the machine. Transitions from one state to another and
issuing control signals are performed in the case statement. At the
beginning of the always statement, all control signals are set to their
inactive values in order to avoid latches on these outputs.

Sequential block. The last part of the code outline of Fig. 8.40 is the
sequential always block for clocking Pstate into Nstate. The control
state register of SAYEH and all its data registers are falling edge trig-
gered. Control signals issues by the controller remain active through the
next falling edge of the system clock.

Instruction execution. Figure 8.41 zooms on the combinational always
statement of the controller module and shows the details of execution
of mvr in the exec1 state of the controller. Signals issued for the exe-
cution of this instruction are shown in this figure. This instruction
reads a word from the right address of the Register File and writes it
into its left address. The right and left (source and destination)
addresses are provided in the Data Path by connections made from IR
to the Register File.

The RFright_on_OpndBus control signal is issued to read the source
register from RegisterFile onto OpndBus. Since this bus is the input of

RT Level Design and Test 295

296 Chapter Eight

Figure 8.41 Instruction Execution

always @ (Instruction or Pstate or ExternalReset or Cflag or Zflag)
begin
. . .

case (Pstate)
. . .

exec1 :
if (ExternalReset == 1’b1) Nstate = reset;
else begin

case (Instruction[15:12])
. . .

mvr : begin
RFright_on_OpndBus = 1’b1;
B15to0 = 1’b1;
ALU_on_Databus = 1’b1;
RFLwrite = 1’b1;
RFHwrite = 1’b1;
SRload = 1’b1;
if (ShadowEn==1’b1)

Nstate = exec2;
else begin

PCplus1 = 1’b1;
EnablePC=1’b1;
Nstate = fetch;

end
end
lda : begin

Rplus0 = 1’b1;
Rs_on_AddressUnitRSide = 1’b1;
ReadMem = 1’b1;
Nstate = exec1lda;

end
. . .

endcase
end

endcase
end
. . .

the ALU, the data on the right input (B) of the ALU must pass through
it to reach its output. For this purpose, the B15to0 control input of ALU
is issued. Once the data reaches the ALU output, it becomes available
at the input of the Register File. Issuing RFLwrite and RFHwrite cause
data to be written into the destination into RegisterFile.

The partial code of Fig. 8.41 shows the assignment of exec2 to Nstate if
the instruction we are executing has a shadow. Otherwise, signals for incre-
menting the Program Counter are issued and the next state is set to fetch.

The execution discussed here applies to most SAYEH instructions.
However, instructions that require memory access, e.g., lda, require an
extra clock for reading the memory. The first part of the execution of lda
is shown in Fig. 8.41. As shown, for the execution of this instruction, the
address is read from Register File and put on the address bus. At the
same time, ReadMem is issued to initiate the memory read process.

The next state for execution of lda after exec1 is exec1lda shown in the
partial code of Fig. 8.42. In this state, ReadMem continues to be issued
and state remains in exec1lda until memDataReady becomes 1. In this

RT Level Design and Test 297

Figure 8.42 Memory Handshaking for exec1lda

always @ (Instruction, Pstate, ExternalReset, Cflag, Zflag) begin
. . .
case (Pstate)

. . .
exec1lda :

if (ExternalReset == 1’b1)
Nstate = reset;

else begin
if (memDataReady == 1’b0) begin

Rplus0 = 1’b1;
Rs_on_AddressUnitRSide = 1’b1;
ReadMem = 1’b1;
Nstate = exec1lda;

end
else begin

RFLwrite = 1’b1;
RFHwrite = 1’b1;
if (ShadowEn==1’b1)

Nstate = exec2;
else begin

PCplus1 = 1’b1;
EnablePC=1’b1;
Nstate = fetch;

end
end

end
. . .

endcase
end
. . .

case, memory data that is available on Databus will be clocked into
RegisterFile by issuing RFLwrite and RFHwrite. Executions of other
SAYEH instructions are similar to the examples we discussed. The com-
plete Verilog code of SAYEH controller is over 800 lines and is included
in the CD that accompanies this book.

8.3.3.4 Complete SAYEH processor. The top-level Verilog code of SAYEH
that is shown in Fig. 8.43 consists of instantiation of DataPath and
controller modules. In the Sayeh module, control signal outputs of controller
are wired to the similarly named signals of DataPath. The ports of the
processor are according to the block diagram of Fig. 8.29.

8.3.4 SAYEH top-level testbench

The complete Verilog description of SAYEH consists of component
descriptions like registers, counters, logic units, and a state machine for
its controller. Chapter 6 has shown how such components can be tested
with testbenches for data application and assertion monitoring. Obviously
testing SAYEH begins with testing its components using such techniques.
On the other hand, a complete test of the processor when all its tested com-
ponents are put together is still necessary. This section discusses top-level
testing of SAYEH.

298 Chapter Eight

Figure 8.43 SAYEH Top-Level Description

module Sayeh (clk, ReadMem, WriteMem, ReadIO, WriteIO,
Databus, Addressbus, ExternalReset, MemDataready);

input clk;
output ReadMem, WriteMem, ReadIO, WriteIO;
inout [15: 0] Databus;
output [15: 0] Addressbus;
input ExternalReset, MemDataready;

wire [15:0] Instruction;
wire esetPC, PCplusI, PCplus1, RplusI, Rplus0,
. . .

DataPath dp (clk, Databus, Addressbus,
ResetPC, PCplusI, PCplus1, RplusI, Rplus0, . . .);

controller ctrl (ExternalReset, clk,
ResetPC, PCplusI, PCplus1, RplusI, Rplus0,
. . .);

endmodule

In a testbench, we instantiate SAYEH, and through a memory model,
we apply instructions to the CPU and watch its response to these test
instructions. For developing such a top-level testbench that is easy for
the design engineer to work with, two issues must be considered: Test
data format and memory size handling.

Test data format must be at a high level so that the designer testing
the CPU can apply large volumes of instructions and data to the CPU.
For this purpose, our testbench takes test data in the form of SAYEH
instructions and translates them to binary data for the processor to be
tested. This scheme was used for our simple AddingCPU and was dis-
cussed in the previous section. SAYEH testbench has such a translation
program that is, of course, much larger than that of AddingCPU.

The other issue that must be considered for a testbench for this design
is memory size handling. Recall that our AddingCPU example did all
its reading and writings directly into an external file representing its
complete memory. Having the complete memory image in one file is not
practical for the relatively large size of SAYEH memory. Furthermore,
moving the complete memory image of the processor being tested into
its testbench and declaring it as a two dimensional reg requires too
much memory of the computer performing the simulation. In a large
design, the actual memory of a design being tested may be larger than
the computer it is being tested on.

In developing a testbench for SAYEH, we focus on the issue of memory
size handling discussed above. Instead of having all memory image in
one file, or all of it declared as a reg, we take an in-between approach.
We partition the memory of the circuit being tested (SAYEH CPU, in our
case) into several pages, and use one file for each page. The file corre-
sponding to a page is named according to the page number it represents.
Then, the actual testbench declares a reg of the size of only one such
page. This reg is regarded as a buffer. When the CPU model addresses
a memory location, the testbench checks to see if that is available in the
buffer. If so, data from the buffer will be read or written into according
to the CPU request. On the other hand, if a memory location is addressed
that is not in the buffer, the testbench writes the contents of the buffer
into its corresponding memory file, and loads the page that has the
addressed location into the buffer.

Figure 8.44 shows the overall structure of our testbench. The sec-
tions that follow discuss the details of the Verilog code of this testbench.
The complete code of this testbench is included in the CD that accom-
panies this book.

8.3.4.1 Testbench Verilog outline. The outline of the Verilog code of
SAYEH testbench is shown in Fig. 8.45. This code corresponds to the

RT Level Design and Test 299

diagram of Fig. 8.44. The SayehTestbench module declares totalAddrLen
and pageLen parameters for the total number of address lines, and
address lines that are only considered for page addressing. With these
parameters, the total memory being handled is 216, there are 24 pages,
and each page is 216−4 = 4096 words. The Verilog code of Fig. 8.45 shows
SayehRAM declared as a memory of 4096 16-bit words. This reg is the
memory buffer that contains one of the 16 pages of the memory.

The initial statement shown in the testbench of SAYEH is responsi-
ble for reading an instruction file, initializing test signals, and control-
ling the simulation start and stop times.

8.3.4.2 Instruction translation. The Translate task called in the initial
block of Fig. 8.45 handles translation of instructions to hex. The instruc-
tion input file is inst.mem and hex files are memFileXX.mem, where XX
is 00 to 15 representing memory file pages. Instruction and data read
from inst.mem are translated to hex and placed in appropriate loca-
tions in the corresponding memory pages. At the end, the Translate
task generates 16 files representing the complete image of the initial
memory of SAYEH.

Except for the page handling, the Translate task of SAYEH testbench
is similar to Convert of AddingCPU testbench. Translate handles more
instructions (all of SAYEH instructions) and writes 16-bit data into its
hexadecimal files. As in Convert, if instead of a mnemonic, “:::” appears
in a line of inst.mem, Translate treats it as a directive for writing data
directly into the specified memory location.

300 Chapter Eight

11110010

Memory Hex Files

Memory Instruction File

Testbench

 Handle Reading

 Swap Pages

 Set Active Page

tri_state hander

page1

pagen

Buffer

Translate

 Handle Writing

 Swap Pages

 Set Dirty Flag

always @(. . .) : MemoryRead

always @(. . .) : MemoryWrite

10010110

11110100

lda F4
jmp 56

11110010

Say
eh

Say
eh

Figure 8.44 Graphical Representation of SAYEH Testbench

RT Level Design and Test 301

Figure 8.45 Testbench Verilog Outline

module SayehTestbench();
parameter totalAddrLen = 16;
parameter pageLen = 4;
parameter pageNumberLen = 2;

reg clk, ExternalReset, MemDataready;
reg [15:0] MemoryData;
wire [15:0] Databus;
wire [totalAddrLen - 1: 0] Addressbus;
wire ReadMem, WriteMem, ReadIO, WriteIO;
wire [totalAddrLen - pageLen - 1: 0] physicalAddr;

reg [15:0] SayehRAM [0:(1<<(totalAddrLen-pageLen))-1];

reg dirty;
reg [pageLen - 1: 0] prePage;
reg [pageNumberLen * 8: 1] pageNumber;
integer i, file;

always #20 clk = ~clk;

initial begin
Translate; //convert file
clk = 0;
ExternalReset = 0;
MemDataready = 0;
MemoryData = 16’bZ;
dirty = 0;
prePage = 15;

#05 ExternalReset = 1;
#81 ExternalReset = 0; //run CPU
#370000;
$stop;

end

always @(negedge clk) begin : MemoryRead
// . . .

end

always @(negedge clk) begin : MemoryWrite
// . . .

end (Continued)

8.3.4.3 Memory read procedure. The MemoryRead always block of
Fig. 8.46 handles reading data requested by SAYEH from its memory
image. If ReadMem is 1, this block performs file and buffer handling
and completes the read operation. If this signal is 0 (see the last part
of the code), MemDataReady is set to 0, and MemoryData is set to
high-impedance.

If ReadMem is 1, the always block of Fig. 8.46 checks to see if the
addressed word is in a page that is in the SayehRAM buffer. If it is not
there, and the existing buffer has data written into it (dirty == 1), then
the present page image from SayehRAM buffer is written to the page it
belongs. If dirty is not 1, the page image in the buffer can simply be over-
written with the contents of the requested page. The $sformat shown
in this part of the code, generates a string corresponding to the dirty
page for creating the file name to open for writing.

When reading from a page whose image is not in SayehRAM, the
$readmemh task shown in Fig. 8.46 reads the file that corresponds to
this page, and loads it into SayehRAM buffer. For generating the proper
file name, the $sformat task converts prePage integer page number to
a two-character string. The argument of $readmemh concatenates this
string with the rest of the file name and reads its contents.

When SayehRAM has the data of the addressed location of memory,
physicalAddress that is the least significant 12 bits of SAYEH address
bus is used for reading data from SayehRAM. This data is placed on
MemoryData, and MemDataReady is issued. MemoryData is assigned
to the CPU Databus with an assign statement.

8.3.4.4 Memory write procedure. Figure 8.47 shows the MemoryWrite
always block. Handling nonexisting pages, dirty pages, address calcu-
lations, and file name generation of this block are similar to that discussed

302 Chapter Eight

Figure 8.45 Testbench Verilog Outline (Continued)

assign Databus = MemoryData;
assign physicalAddr = Addressbus[totalAddrLen-pageLen–1 : 0];

Sayeh U1 (clk, ReadMem, WriteMem, ReadIO, WriteIO,
Databus, Addressbus, ExternalReset, MemDataready);

task Translate;
// . . .

endtask

endmodule

in conjunction with the MemoryRead block. As shown near the end of
code of Fig. 8.47, when writing, the 12-bit physicalAddress correspon-
ding to the least significant bits of Addressbus is used to address the
SayehRAM buffer. After a write, dirty is set to indicate that page-data
in SayehRAM is different from its corresponding file. As discussed above,
this flag is used to indicate if an unwanted page can simply be ignored
or its file image needs to be updated.

The last part of the outline Verilog code of Fig. 8.45 shows instanti-
ation of SAYEH. This processor issues ReadMem and WriteMem sig-
nals that activate MemoryRead and MemoryWrite always blocks
discussed above. In the next section a program written for SAYEH in
its assembly language is discussed. This program is initially entered

RT Level Design and Test 303

Figure 8.46 Reading from the Memory

always @(negedge clk) begin : MemoryRead
if (ReadMem) begin

#1
if (prePage != Addressbus[totalAddrLen-1:totalAddrLen-

pageLen])
begin

if (dirty) begin
$sformat (pageNumber, “%0d”, prePage);
file = $fopen ({“memfile”, pageNumber, “.mem”}, “r+”);
// opens the corresponding memory file
for (i = 0; i < (1<<(totalAddrLen - pageLen)); i=i+1)

$fwrite (file, “%h\n”, SayehRAM[i]);
dirty = 0;
$fclose (file);

end
prePage = Addressbus[totalAddrLen-1:totalAddrLen-

pageLen];
$sformat (pageNumber, “%0d”, prePage);
$readmemh ({“memfile”, pageNumber, “.mem”}, SayehRAM);
// reads the corresponding memory file

end
MemDataready = 1;
MemoryData = SayehRAM [physicalAddr];

end else begin
#1
MemDataready = 0;
MemoryData = 16’hZZZZ;

end
end

in inst.mem file and is translated and applied to SAYEH by the test-
bench discussed here.

8.3.5 Sorting test program

Figure 8.48 shows a sorting program for SAYEH. This program reads
data starting from the CPU memory and sorts them in descending order.
The number of data item to sort is in location 768 and data begins in
the next memory location. This sorting program uses two loops for the
sorting to be done. When completed, the CPU is put into the halt state.

The program shown in Fig. 8.48 is translated into its hexadecimal
equivalent and is put in SayehRAM.hex file. As discussed in the previ-
ous section, SAYEH testbench reads instructions from this file and
applies to the CPU.

8.3.6 SAYEH hardware realization

The SAYEH CPU described in this chapter has been synthesized and pro-
grammed into a number of FPGAs and tested on Altera development boards.

304 Chapter Eight

Figure 8.47 Writing into the Memory

always @(negedge clk) begin : MemoryWrite
#1
if (WriteMem) begin

if (prePage !=
Addressbus [totalAddrLen-1 : totalAddrLen - pageLen])

begin
if (dirty) begin

$sformat (pageNumber, “%0d”, prePage);
file = $fopen ({“memfile”, pageNumber, “.mem”}, “r+”);
// opens the corresponding memory file
for (i=0; i < (1<<(totalAddrLen-pageLen)); i=i+1)

$fwrite (file, “%h\n”, SayehRAM[i]);
dirty = 0;
$fclose (file);

end
prePage =
Addressbus[totalAddrLen-1:totalAddrLen-pageLen];
$sformat (pageNumber, “%0d”, prePage);
$readmemh ({“memfile”, pageNumber, “.mem”}, SayehRAM);
// reads the corresponding memory file

end
#1 SayehRAM [physicalAddr] = Databus;
dirty = 1;

end
end

RT Level Design and Test 305

Figure 8.48 Sorting Program for SAYEH

0000 mil r0 00 :r0=768 starting address in memory
0001 mih r0 03 :
0002 lda r1 r0 :r1= total number of elements
0003 awp 5 :
0004 mil r0 01 :r5=1 for adding with index each time
0005 mih r0 00 :
0006 cwp :
0006 add r1 r0 :r1= limit for final r4
0007 mvr r2 r1 :
0008 awp 2 :
0009 sub r0 r3 :r2= limit for index r3
0009 cwp :
000A mvr r3 r0 :r3= outer index
000A nop :
000B cwp :
000B cmp r3 r2 : is the outer index is equal to its limit
000C brz 19: branch to 0025 if zero
000D awp 3 :
000E add r0 r2 :r3=r3+1 increment outer index
000E mvr r1 r0 :r4=r3 set inner index to outer index as

initial
000F cwp :
0010 awp 1 :
0011 cmp r3 r0 : check if inner index reaches its limit
0012 brz 10: branch to 0022 if zero
0013 awp 2 :
0014 lda r3 r0 :r6=(r3)
0015 awp 1 :
0016 add r0 r1 :r4=r4+r5 increment inner index
0016 lda r3 r0 :r7=(r4)
0017 cmp r2 r3 : check if r6 is greater than r7
0018 brc 07: branch to 001F if carry
0019 lda r1 r0 :r5=(r4) r5 as an temporary register
0019 sta r0 r2 :(r4)=r6
001A cwp :
001B awp 3 :
001C sta r0 r2 :(r3)=r5
001D mil r2 01 :
001E mih r2 00 :r5=1 for adding with index each time
001F cwp :
0020 awp 5 :
0021 jpa r0 0E : jump to 000F
0022 cwp :
0023 awp 5 :
0024 jpa r0 0A : jump to 000B
0025 hlt :

One implementation has been on Altera’s FLEX device of an Altera
UP2. We used a RAM from Altera’s megafunctions and configured it as
a memory of 1024 16-bit words. The number of logic elements used by
this CPU was 1,125, which is 30% of the available LEs. Memory bits
used was 16,384, which is 44% of the available memory bits. This usage
indicates that we can form a complete system with a keyboard and VGA
output on a FLEX 10K of UP2.

8.4 Summary

This chapter showed design, testing, and implementation of several RT
level designs of a complete CPU. This design put all that we have cov-
ered in this book into one package. The design is complete and typical
of any large system with a complex controller and data path. Use of the
synthesizable subset of Verilog to develop for development of a design
for FPGA programming was shown. On the other hand, utilization of
behavioral constructs of Verilog was demonstrated in developing a test-
bench for our processor.

Problems

8.1 Design a 2’s complement multiplier using Booth’s algorithm. Your design
should consist of two units, a controller and a datapath. The multiplier has an
8-bit A and B inputs and a 16-bit result.

8.2 Design a multiplier that performs its 4 × 4 multiplications by a memory
lookup. Your design should consist of a controller and a datapath. The multiplier
has 8-bit A and B inputs and a 16-bit result. The addresses in the memory can
at most be 8-bit.

8.3 In this problem you are to design a Single Cycle processor. The processor
has a 16 bit external data bus, and a 12 bit address bus for memory or read and
write. The processor has a 16 bit register (acc), which is used as an operand in
arithmetic instructions and as an accumulator for holding data read from memory
in load instructions. The processor can address 4048 16-bit words of the memory.
Memory read and write operations are synchronous with the system clock and
they are completed in one cycle. In reading from the memory, the address bus
containing the address of the desired memory cell and the read signal should be
issued to the data memory block. In writing into memory, the address and the
write signal should be issued. The machine has 16-bit instructions consisting of
a 4-bit opcode and a 12-bit address. The processor has three types of instructions:
arithmetic and logical instructions (ADD, CPL, AND, INC), data-transfer
instructions (STA, LDA), and control-flow instructions (JNZ, JMP). JNZ is
jump and acc is zero. Table shown below, shows processor instructions.

306 Chapter Eight

8.4 In this problem, you are to design a stack based multi-cycle processor.
This processor has an 8 bit data bus and a 5 bit address bus. It’s memory is
32 × 8 (32 bytes). Processor instructions are 8 bits wide with a 3-bit opcode. All
the processor instructions use the processor’s internal stack. For example, the
ADD instruction takes its operands from the top two stack locations. For this
instruction, two top operands on the stack are popped and then the result of their
addition is pushed back into the stack. The instructions and their opcodes are
shown in the following table. Processor has eight different instructions that are
categorized into three types: arithmetic and logical instructions (ADD, SUB, AND,
NOT), memory-access instructions (PUSH, POP), and control-flow instructions
(JMP).

RT Level Design and Test 307

Opcode Instruction Instruction class Description

0000 ADD adr Arithmetic-logical acc<= acc+Mem[adr]
0001 CPL adr Arithmetic-logical acc<= Mem[adr]
0010 AND adr Arithmetic-logical acc<=acc & Mem[adr]
0011 INC adr Arithmetic-logical acc<= (Mem[adr]+1)
0100 LDA adr Data-transfer acc<= Mem[adr]
0101 STA adr Data-transfer Mem[adr] <= acc
0110 JMP adr Control-flow Unconditional Jump to adr
0111 JNZ adr Control-flow Conditional Jump to adr

Mnemonic Instruction description Bits [7:5]

ADD Pop two operands, add, push result 000
SUB Pop two operands, subtract, push result 001
AND Pop two operands, AND, push result 010
NOT Pop operand, complement, push result 011
PUSH Load Address 100
POP Store Address 101
JMP Jump Address 110
JZ Jump Address if top of stack is zero 111

Suggested Reading

IEEE Std 1364-2001, IEEE Standard Verilog Language Reference Manual, SH94921-TBR
(print) SS94921-TBR (electronic), ISBN 0-7381-2827-9 (print and electronic), 2001.

Navabi, Z., Digital Design and Implementation with Field Programmable Devices, Kluwer
Academic Publishers, Boston, 2005, ISBN: 1-4020-8011-5.

Navabi, Z., Verilog Computer-Based Training Course, CBT CD with hardcopy User’s
manual, McGraw-Hill, New York, 2002, ISBN 0-07-137473-6.

Navabi, Z., VHDL: Analysis and Modeling of Digital Systems (Series in Electrical and
Computer Engineering), McGraw-Hill College Division, New York, 1992, ISBN: 0070464723.

Patterson, D.A., J.L. Hennessy, P.J. Ashenden, et al., Computer Organization and Design:
The Hardware/Software Interface, Third Edition, 3rd ed, Morgan Kaufmann, San
Fransisco, 2004, ISBN: 1558606041.

This page intentionally left blank

Appendix

A
List of Keywords

Verilog keywords are predefined identifiers used in the Verilog language
constructs.

309

always

and

assign

automatic

begin

buf

bufif0

bufif1

case

casex

casez

cell

cmos

config

deassign

default

defparam

design

disable

edge

else

end

endcase

endconfig

endfunction

endgenerate

endmodule

endprimitive

endspecify

endtable

endtask

event

for

force

forever

fork

function

generate

genvar

highz0

highz1

if

ifnone

incdir

include

initial

inout

input

instance

integer

join

large

liblist

library

localparam

macromodule

medium

module

nand

negedge

nmos

nor

noshowcancelled

not

notif0

notif1

Copyright © 2006 by The McGraw-Hill Publishing Companies, Inc. Click here for terms of use.

310 Appendix A

or

output

parameter

pmos

posedge

primitive

pull0

pull1

pulldown

pullup

pulsestyle_onevent

pulsestyle_ondetect

rcmos

real

realtime

reg

release

repeat

rnmos

rpmos

rtran

rtranif0

rtranif1

scalared

showcancelled

signed

small

specify

specparam

strong0

strong1

supply0

supply1

table

task

time

tran

tranif0

tranif1

tri

tri0

tri1

triand

trior

trireg

unsigned

use

vectored

wait

wand

weak0

weak1

while

wire

wor

xnor

xor

Appendix

B
Frequently Used

System Tasks and Functions

This appendix includes a list of frequently used Verilog system tasks
and functions for reference. For each such utility a brief description is
provided. Examples for these and other system tasks are included in
the chapters. The details of system tasks not discussed here and cor-
responding examples can be found in Chap. 7.

B.1 Display Tasks

$display The $displayb task displays its arguments in the order that they
appear. Display will be done to the standard output device. When invoked, it
always inserts a newline character at the end of its output string. Strings to be
displayed as well as format specifications must appear in double quotes as an
argument of this task. Task invocation,

$display (“Counter value is: %d”, cnt);

prints value of cnt variable in decimal format. Decimal format is assumed if no
format specification exists for a variable or expression.

$displayb The $displayb task displays its arguments in the order that they
appear. Display will be done to the standard output device. When invoked, it
always inserts a newline character at the end of its output string. Strings to be
displayed as well as format specifications must appear in double quotes as an
argument of this task. Task invocation,

$displayb (“Counter value is: %o”, cnt);

prints value of cnt variable in octal format. Binary format is assumed if no
format specification exists for a variable or expression.

311

Copyright © 2006 by The McGraw-Hill Publishing Companies, Inc. Click here for terms of use.

$displayh The $displayh task displays its arguments in the order that they
appear. Display will be done to the standard output device. When invoked, it
always inserts a newline character at the end of its output string. Strings to be
displayed as well as format specifications must appear in double quotes as an
argument of this task. Task invocation,

$displayh (“Counter value is: %b”, cnt);

prints value of cnt variable in binary format. Hexadecimal format is assumed
if no format specification exists for a variable or expression.

$displayo The $displayo task displays its arguments in the order that they
appear. Display will be done to the standard output device. When invoked, it
always inserts a newline character at the end of its output string. Strings to be
displayed, as well as, format specifications must appear in double quotes as an
argument of this task. Task invocation,

$displayo (“Counter value is: %h”, cnt);

prints value of cnt variable in hexadecimal format. Octal format is assumed if
no format specification exists for a variable or expression.

$monitoron Turns on the monitor flag used by various forms of the $monitor
system task. Monitoring will be enabled.

$monitoroff Turns off the monitor flag used by various forms of the $monitor
system task. Monitoring will be disabled.

$monitor While monitor flag is on, when a variable or an expression on
the argument list changes value, the entire argument list is displayed as in the
$display system task.

$monitorb While monitor flag is on, when a variable or an expression on
the argument list changes value, the entire argument list is displayed as in the
$displayb system task.

$monitorh While monitor flag is on, when a variable or an expression on
the argument list changes value, the entire argument list is displayed as in the
$displayh system task.

$monitoro While monitor flag is on, when a variable or an expression on
the argument list changes value, the entire argument list is displayed as in the
$displayo system task.

$strobe Using the same format as in $display, the $strobe system task dis-
plays its arguments in a simulation cycle after all events have expired.

$strobeb Using the same format as in $displayb, the $strobeb system task
displays its arguments in a simulation cycle after all events have expired.

$strobeh Using the same format as in $displayh, the $strobeh system task
displays its arguments in a simulation cycle after all events have expired.

312 Appendix B

$strobeo Using the same format as in $displayo, the $strobeo system task
displays its arguments in a simulation cycle after all events have expired.

$write The $write task displays its arguments in the order that they appear
using the same format as in $display. Unlike the $display task a newline
character is not added to the end of its output, and consecutive outputs continue
on the same line.

$writeb The $writeb task displays its arguments in the order that they
appear using the same format as in $displayb. Unlike the $displayb task a
newline character is not added to the end of its output, and consecutive outputs
continue on the same line.

$writeh The $writeh task displays its arguments in the order that they
appear using the same format as in $displayh. Unlike the $displayh task a
newline character is not added to the end of its output, and consecutive outputs
continue on the same line.

$writeo The $writeo task displays its arguments in the order that they
appear using the same format as in $displayo. Unlike the $displayo task a
newline character is not added to the end of its output, and consecutive outputs
continue on the same line.

B.2 File I/O Tasks

$fopen The $fopen system function returns a file descriptor for the physical
file specified as a string in the function argument. The following example makes
desc a descriptor for the physical file dataset.dat.

integer desc = $fopen (“dataset.dat”);

$fclose The $fclose task closes an open file. The only argument of this task
is a file descriptor for an open file.

$fdisplay The $fdisplay task outputs its arguments in the order that they
appear. Writing will be done to a file specified by its descriptor. The file descrip-
tor must appear first in the task argument list. This task uses the same for-
matting as in the $display task. Task invocation,

$fdisplay (desc, “Counter value is: %d”, cnt);

prints value of cnt variable in decimal format. Decimal format is assumed if no
format specification exists for a variable or expression.

$fdisplayb The $fdisplay task outputs its arguments in the order that they
appear. Writing will be done to a file specified by its descriptor. The file descrip-
tor must appear first in the task argument list. This task uses the same for-
matting as in the $displayb task. Task invocation,

$fdisplayb (desc, “Counter value is: %d”, cnt);

Frequently Used System Tasks and Functions 313

prints value of cnt variable in decimal format. Binary format is assumed if no
format specification exists for a variable or expression.

$fdisplayh The $fdisplayh task outputs its arguments in the order that
they appear. Writing will be done to a file specified by its descriptor. The file
descriptor must appear first in the task argument list. This task uses the same
formatting as in the $displayh task. Task invocation,

$fdisplayh (desc, “Counter value is: %d”, cnt);

prints value of cnt variable in decimal format. Hexadecimal format is assumed
if no format specification exists for a variable or expression.

$fdisplayo The $fdisplayo task outputs its arguments in the order that they
appear. Writing will be done to a file specified by its descriptor. The file descrip-
tor must appear first in the task argument list. This task uses the same for-
matting as in the $displayo task. Task invocation,

$fdisplayo (desc, “Counter value is: %d”, cnt);

prints value of cnt variable in decimal format. Octal format is assumed if no
format specification exists for a variable or expression.

$fmonitor While monitor flag is on, when a variable or an expression on the
argument list changes value, the entire argument list is written into a file. The
file is specified by its descriptor which is the first argument in the task argu-
ment list. This task uses the same formatting as in the $display task.

$fmonitorb While monitor flag is on, when a variable or an expression on the
argument list changes value, the entire argument list is written into a file. The
file is specified by its descriptor which is the first argument in the task argu-
ment list. This task uses the same formatting as in the $displayb task.

$fmonitorh While monitor flag is on, when a variable or an expression on the
argument list changes value, the entire argument list is written into a file. The
file is specified by its descriptor which is the first argument in the task argu-
ment list. This task uses the same formatting as in the $displayh task.

$fmonitoro While monitor flag is on, when a variable or an expression on the
argument list changes value, the entire argument list is written into a file. The
file is specified by its descriptor which is the first argument in the task argu-
ment list. This task uses the same formatting as in the $displayo task.

$fstrobe Using the same format as in $display, the $fstrobe system task
writes its arguments into a file specified by its descriptor as the first argument
of the task. Writing will be done in a simulation cycle after all events have
expired.

$fstrobeb Using the same format as in $displayb, the $fstrobeb system task
writes its arguments into a file specified by its descriptor as the first argument
of the task. Writing will be done in a simulation cycle after all events have expired.

314 Appendix B

$fstrobeh Using the same format as in $displayh, the $fstrobeh system task
writes its arguments into a file specified by its descriptor as the first argument
of the task. Writing will be done in a simulation cycle after all events have
expired.

$fstrobeo Using the same format as in $displayo, the $fstrobeo system
task writes its arguments into a file specified by its descriptor as the first argu-
ment of the task. Writing will be done in a simulation cycle after all events have
expired.

$fwrite The $fwrite task is similar to the $fdisplay task except that it does
not insert a newline character at the end of its output string. Descriptor for the
file into which writing is done appears first in the argument list of this task.

$fwriteb The $fwriteb task is similar to the $fdisplayb task except that it
does not insert a newline character at the end of its output string. Descriptor for
the file into which writing is done appears first in the argument list of this task.

$fwriteh The $fwriteh task is similar to the $fdisplayh task except that it
does not insert a newline character at the end of its output string. Descriptor for
the file into which writing is done appears first in the argument list of this task.

$fwriteo The $fwriteo task is similar to the $fdisplayo task except that it
does not insert a newline character at the end of its output string. Descriptor for
the file into which writing is done appears first in the argument list of this task.

$readmemb A physical file name and a memory name are required arguments
of the $readmemb task. When invoked, this task reads binary data from file
specified in its argument and loads this data into the memory specified as its
second parameter. Optionally, invocation of this task may contain range of
memory words to fill.

If mem is declared as

reg [15:0] mem [0:511],

then, invocation shown below reads 16 bit words in binary from memdata.dat
file and loads this data into memory locations 12 to 412.

$readmemb(“memdata.dat”, mem, 12, 412);

$readmemh A physical file name and a memory name are required arguments
of the #readmemh task. When invoked, this task reads hexadecimal data from
file specified in its argument and loads this data into the memory specified as
its second parameter. Optionally, invocation of this task may contain range of
memory words to fill.

If mem is declared as

reg [15:0] mem [0:511],

Frequently Used System Tasks and Functions 315

then, invocation shown below reads 16 bit words in hexadecimal from memdata.dat
file and loads this data into memory locations 12 to 412.

$readmemh(“memdata.dat”, mem, 12, 412);

$swrite The $swrite string output system task is similar to $fwrite but
instead of writing to a file it writes its arguments into a register. This task can
be used to convert data to string.

$sformat The $sformat task is another string output system task. This task
is similar to $swrite with one major difference; it always interprets its argu-
ments as a format string.

$fgetc The $fgetc reads a byte (character) from a specified file, i.e., $fgetc
(fd), reads from fd. The specified file must be opened with either r or r+ type
values to make them available for reading.

$ungetc The $ungetc inserts a character into the buffer of a specified file.
The character shall be returned by the next $fgetc call of the specified file. The
file itself remains unchanged.

$fgets It reads characters from a specified file into a string register until
either the register is filled or a newline character is read from the file. An exam-
ple usage is:

$fgets (string_name, file_descriptor);

$fscanf It reads data from a specified file into a register. It reads characters
and interprets them according to the format specified by it arguments.

$sscanf The $sscanf is similar to the $fscanf. The difference is that $sscanf
reads from a string register.

$fread It reads binary data from a specified file and writes into a memory. The
address of the first data to be written and the number of them can be specified
in this task.

$ftell The $ftell returns the offset from the beginning of a specified file. This
task is useful for file positioning.

$fseek The $fseek task sets the position of the next input or output opera-
tion on a specified file. The positioning can be specified by offset bytes from begin-
ning of the file or current position, or from the end of the file. General format
of use of $fseek is shown below. The value of operation (0, 1, or 2) determines
if position is set to offset, offset plus current location, or EOF plus offset.

Code = $fseek (fd, offset, operation);

$rewind The $rewind task sets the position of a specified file to the begin-
ning of the file.

316 Appendix B

$fflush The $fflush task writes any buffered output to a specified file. If $fflush
is invoked with no arguments, it writes any buffered output to all open files.

$ferror It creates a string description of the type of the error encountered by
the most recent file I/O operation and writes it into a specified register.

B.3 Timescale Tasks

$printtimescale The $printtimescale task prints time unit and time preci-
sion specified by ̀ timescale directive. If used without an argument this task con-
siders `timescale of the module within which it is invoked. If used with an
argument, the argument must be the hierarchical name of the module considered.

$timeformat The $timeformat task specifies how %t format specification
reports time information for various forms of display tasks. Arguments of this
task are unit number, precision number, suffix string, and field width. Unit
number is an integer between 0 and 15 specifying time units 1s to 1fs respec-
tively. Precision number argument specifies number of fractional digits of time
reported. Suffix string argument is a string for textual representation of time
unit. The last argument specifies the width of time information output string.

B.3.1 Simulation control tasks

$finish When encountered in a procedural flow the $finish system task ter-
minates and exits simulation. An integer between 0 and 2 passed to this task
as an argument specifies the type of message printed when task is invoked.

$stop The $stop system task suspends simulation when invoked. An integer
between 0 and 2 passed to this task as an argument specifies the type of mes-
sage printed when task is invoked.

B.4 Timing Check Tasks

$hold The $hold system task reports a violation when a reference event
occurs too close to a data event. A time limit specifying hold time is the allowed
time distance between the reference and data events. The first argument spec-
ifies the reference event such as the clock edge. The second argument specifies
the data signal. The third argument specifies the hold time.

$hold (posedge clk, data, holdtime);

$period Time distance between consecutive events of the same kind (positive
or negative) is monitored by the $period task. The first argument is the refer-
ence event and the second event is the time specifying the period.

$setup The $setup system task reports a violation when a data event occurs
too close to a reference event. A time limit, which is the setup time, specifies

Frequently Used System Tasks and Functions 317

allowed time distance between the data and reference events. The first argu-
ment specifies the name of data signal. The second argument specifies the ref-
erence event such as the clock edge. The third argument is the setup time. An
example is:

$setup (data, posedge clk, setuptime);

$skew The $skew system task reports a violation when a reference event and
a data event are too far a part in time. As in the $hold task, the reference event
is the first argument, the data event is the second argument and the skew time
is the third argument of this task.

$nochange The $nochange task reports a violation if during a level speci-
fied by transition on reference event of its first argument, its second argument
changes value. Offset time values specified by third and fourth arguments
expand or shrink the time within which data events are monitored. The following
statement report a violation if go changes while start is 0.

$nochange (negedge start, go, 0, 0);

$recovery The $recovery task is similar to the $setup task except that the
$recovery task reports a violation if the data event and reference event occur
at the same simulation time.

$setuphold The $setuphold task is invoked with arguments specifying a ref-
erence event, a data event, setup time, and hold time in this order. This task
performs both $setup and $hold tasks.

$width The $width system task reports a violation when a reference event,
specified by its first argument, occurs too close to an opposite event on this
argument. The second argument of this task is the allowed pulse width.

318 Appendix B

Appendix

C
Compiler Directives

This appendix briefly describes Verilog HDL compiler directives. Use
and examples of such a language utility where described in Chaps. 7
and 9.

`celldefine Bracketing modules between `celldefine and
`endcelldefine `endcelldefine tags the modules as cells.

`default_nettype The `default_nettype directive sets the type of
implicit nets. The default is wire.

`define The `define directive aliases an expression with
`undef a name. The `undef directive turns of aliases set

by `define.

`ifdef Directives ̀ ifdef, ̀ else, and ̀ endif are if-then-else
`else type bracketing for optional compilation of a
`endif Verilog code.
`include The ̀ include directive inserts text from an external

file.

`unconnected_drive The ̀ unconnected_drive and ̀ nounconnected_
`nounconnected_drive drive directives bracket a portion of code for which

unconnected input ports will be treated pulled up
or pulled down instead of normal default.

`resetall The ̀ resetall directive resets all directives to their
default values.

`timescale For setting time scale and time precision,
`timescale is used.

319

Copyright © 2006 by The McGraw-Hill Publishing Companies, Inc. Click here for terms of use.

This page intentionally left blank

Appendix

D
Verilog Formal

Syntax Definition

The formal syntax of Verilog HDL is described using Backus-Naur Form
(BNF).

D.1 Source text

D.1.1 Library Source Text

library_text ::= { library_descriptions }
library_descriptions ::=

library_declaration
|include_statement
|config_declaration

library_declaration ::=
library library_identifier file_path_spec [{ , file_path_spec }]
[-incdir file_path_spec [{ , file_path_spec }] ;

file_path_spec ::= file_path
include_statement ::= include <file_path_spec> ;

D.1.2 Configuration Source Text

config_declaration ::=
config config_identifier ;
design_statement
{config_rule_statement}
endconfig

design_statement ::= design { [library_identifier.]cell_identifier } ;
config_rule_statement ::=

321

Copyright © 2006 by The McGraw-Hill Publishing Companies, Inc. Click here for terms of use.

default_clause liblist_clause
|inst_clause liblist_clause
|inst_clause use_clause
|cell_clause liblist_clause
|cell_clauseuse_clause

default_clause ::= default
inst_clause ::= instance inst_name
inst_name ::= topmodule_identifier{.instance_identifier}
cell_clause ::= cell [library_identifier.]cell_identifier
liblist_clause ::= liblist [{library_identifier}]
use_clause ::= use [library_identifier.]cell_identifier[:config]

D.1.3 Module and Primitive Source Text

source_text ::= { description }
description ::=

module_declaration
|udp_declaration

module_declaration ::=
{ attribute_instance } module_keyword module_identifier [module_

param eter_port_list]
[list_of_ports] ; { module_item }
endmodule

|{ attribute_instance } module_keyword module_identifier [module_
parameter_port_list]

[list_of_port_declarations] ; { non_port_module_item }
endmodule

module_keyword ::= module |macromodule

D.1.4 Module Parameters and Ports

module_parameter_port_list ::= # (parameter_declaration { , parameter_declaration })
list_of_ports ::= (port { , port })
list_of_port_declarations ::=

(port_declaration { , port_declaration })
|()

port ::=
[port_expression]

|. port_identifier ([port_expression])
port_expression ::=

port_reference
|{ port_reference { , port_reference } }

port_reference ::=
port_identifier

|port_identifier [constant_expression]
|port_identifier [range_expression]

port_declaration ::=
{attribute_instance} inout_declaration

|{attribute_instance} input_declaration
|{attribute_instance} output_declaration

322 Appendix D

D.1.5 Module Items

module_item ::=
module_or_generate_item

|port_declaration ;
|{ attribute_instance } generated_instantiation
|{ attribute_instance } local_parameter_declaration
|{ attribute_instance } parameter_declaration
|{ attribute_instance } specify_block
|{ attribute_instance } specparam_declaration

module_or_generate_item ::=
{ attribute_instance } module_or_generate_item_declaration

|{ attribute_instance } parameter_override
|{ attribute_instance } continuous_assign
|{ attribute_instance } gate_instantiation
|{ attribute_instance } udp_instantiation
|{ attribute_instance } module_instantiation
|{ attribute_instance } initial_construct
|{ attribute_instance } always_construct

module_or_generate_item_declaration ::=
net_declaration

|reg_declaration
|integer_declaration
|real_declaration
|time_declaration
|realtime_declaration
|event_declaration
|genvar_declaration
|task_declaration
|function_declaration

non_port_module_item ::=
{ attribute_instance } generated_instantiation

|{ attribute_instance } local_parameter_declaration
|{ attribute_instance } module_or_generate_item
|{ attribute_instance } parameter_declaration
|{ attribute_instance } specify_block
|{ attribute_instance } specparam_declaration

parameter_override ::= defparam list_of_param_assignments ;

D.2 Declarations

D.2.1 Declaration Types

D.2.1.1 Module Parameter Declarations

local_parameter_declaration ::=
localparam [signed] [range] list_of_param_assignments ;

|localparam integer list_of_param_assignments ;
|localparam real list_of_param_assignments ;
|localparam realtime list_of_param_assignments ;
|localparam time list_of_param_assignments ;

Verilog Formal Syntax Definition 323

parameter_declaration ::=
parameter [signed] [range] list_of_param_assignments ;

|parameter integer list_of_param_assignments ;
|parameter real list_of_param_assignments ;
|parameter realtime list_of_param_assignments ;
|parameter time list_of_param_assignments ;

specparam_declaration ::= specparam [range] list_of_specparam_assignments ;

D.2.1.2 Port Declarations

inout_declaration ::= inout [net_type] [signed] [range]
list_of_port_identifiers

input_declaration ::= input [net_type] [signed] [range]
list_of_port_identifiers

output_declaration ::=
output [net_type] [signed] [range]

list_of_port_identifiers
|output [reg] [signed] [range]

list_of_port_identifiers
|output reg [signed] [range]

list_of_variable_port_identifiers
|output [output_variable_type]

list_of_port_identifiers
|output output_variable_type

list_of_variable_port_identifiers

D.2.1.3 Type Declarations

event_declaration ::= event list_of_event_identifiers ;
genvar_declaration ::= genvar list_of_genvar_identifiers ;
integer_declaration ::= integer list_of_variable_identifiers ;
net_declaration ::=

net_type [signed]
[delay3] list_of_net_identifiers ;

|net_type [drive_strength] [signed]
[delay3] list_of_net_decl_assignments ;

|net_type [vectored |scalared] [signed]
range [delay3] list_of_net_identifiers ;

|net_type [drive_strength] [vectored |scalared] [signed]
range [delay3] list_of_net_decl_assignments ;

|trireg [charge_strength] [signed]
[delay3] list_of_net_identifiers ;

|trireg [drive_strength] [signed]
[delay3] list_of_net_decl_assignments ;

|trireg [charge_strength] [vectored |scalared] [signed]
range [delay3] list_of_net_identifiers ;

|trireg [drive_strength] [vectored |scalared] [signed]
range [delay3] list_of_net_decl_assignments ;

real_declaration ::= real list_of_real_identifiers ;
realtime_declaration ::= realtime list_of_real_identifiers ;

324 Appendix D

reg_declaration ::= reg [signed] [range]
list_of_variable_identifiers ;

time_declaration ::= time list_of_variable_identifiers ;

D.2.2 Declaration Data Types

D.2.2.1 Net and Variable Types

net_type ::=
supply0 |supply1

|tri |triand |trior |tri0 |tri1
|wire |wand |wor

output_variable_type ::= integer |time
real_type ::=

real_identifier [= constant_expression]
|real_identifier dimension { dimension }

variable_type ::=
variable_identifier [= constant_expression]

|variable_identifier dimension { dimension }

D.2.2.2 Strengths

drive_strength ::=
(strength0 , strength1)

|(strength1 , strength0)
|(strength0 , highz1)
|(strength1 , highz0)
|(highz0 , strength1)
|(highz1 , strength0)

strength0 ::= supply0 |strong0 |pull0 |weak0
strength1 ::= supply1 |strong1 |pull1 |weak1
charge_strength ::= (small) |(medium) |(large)

D.2.2.3 Delays

delay3 ::= # delay_value |# (delay_value [, delay_value [, delay_value]])
delay2 ::= # delay_value |# (delay_value [, delay_value])
delay_value ::=

unsigned_number
|parameter_identifier
|specparam_identifier
|mintypmax_expression

D.2.3 Declaration Lists

list_of_event_identifiers ::= event_identifier [dimension { dimension }]
{ , event_identifier [dimension { dimension }] }

list_of_genvar_identifiers ::= genvar_identifier { , genvar_identifier }
list_of_net_decl_assignments ::= net_decl_assignment { , net_decl_assignment }

Verilog Formal Syntax Definition 325

list_of_net_identifiers ::= net_identifier [dimension { dimension }]
{ , net_identifier [dimension { dimension }] }

list_of_param_assignments ::= param_assignment { , param_assignment }
list_of_port_identifiers ::= port_identifier { , port_identifier }
list_of_real_identifiers ::= real_type { , real_type }
list_of_specparam_assignments ::= specparam_assignment { , specparam_assignment }
list_of_variable_identifiers ::= variable_type { , variable_type }
list_of_variable_port_identifiers ::= port_identifier [= constant_expression]

{ , port_identifier [= constant_expression] }

D.2.4 Declaration Assignments

net_decl_assignment ::= net_identifier = expression
param_assignment ::= parameter_identifier = constant_expression
specparam_assignment ::=

specparam_identifier = constant_mintypmax_expression
|pulse_control_specparam

pulse_control_specparam ::=
PATHPULSE$ = (reject_limit_value [, error_limit_value]) ;

|PATHPULSE$specify_input_terminal_descriptor$specify_output_
terminal_descriptor

= (reject_limit_value [, error_limit_value]) ;
error_limit_value ::= limit_value
reject_limit_value ::= limit_value
limit_value ::= constant_mintypmax_expression

D.2.5 Declaration Ranges

dimension ::= [dimension_constant_expression : dimension_constant_expression]
range ::= [msb_constant_expression : lsb_constant_expression]

D.2.6 Function Declarations

function_declaration ::=
function [automatic] [signed] [range_or_type] function_identifier ;
function_item_declaration { function_item_declaration }
function_statement
endfunction

|function [automatic] [signed] [range_or_type] function_identifier
(function_port_list) ;
block_item_declaration { block_item_declaration }
function_statement
endfunction

function_item_declaration ::=
block_item_declaration

|tf_input_declaration ;
function_port_list ::= { attribute_instance } tf_input_declaration { , { attribute_instance }

tf_input_declaration }
range_or_type ::= range |integer |real |realtime |time

326 Appendix D

D.2.7 Task Declarations

task_declaration ::=
task [automatic] task_identifier ;
{ task_item_declaration }
statement
endtask

|task [automatic] task_identifier (task_port_list) ;
{ block_item_declaration }
statement
endtask

task_item_declaration ::=
block_item_declaration

|{ attribute_instance } tf_input_declaration ;
|{ attribute_instance } tf_output_declaration ;
|{ attribute_instance } tf_inout_declaration ;

task_port_list ::= task_port_item { , task_port_item }
task_port_item ::=

{ attribute_instance } tf_input_declaration
|{ attribute_instance } tf_output_declaration
|{ attribute_instance } tf_inout_declaration

tf_input_declaration ::=
input [reg] [signed] [range] list_of_port_identifiers

|input [task_port_type] list_of_port_identifiers
tf_output_declaration ::=

output [reg] [signed] [range] list_of_port_identifiers
|output [task_port_type] list_of_port_identifiers

tf_inout_declaration ::=
inout [reg] [signed] [range] list_of_port_identifiers

|inout [task_port_type] list_of_port_identifiers
task_port_type ::=

time |real |realtime |integer

D.2.8 Block Item Declarations

block_item_declaration ::=
{ attribute_instance } block_reg_declaration

|{ attribute_instance } event_declaration
|{ attribute_instance } integer_declaration
|{ attribute_instance } local_parameter_declaration
|{ attribute_instance } parameter_declaration
|{ attribute_instance } real_declaration
|{ attribute_instance } realtime_declaration
|{ attribute_instance } time_declaration

block_reg_declaration ::= reg [signed] [range]
list_of_block_variable_identifiers ;

list_of_block_variable_identifiers ::=
block_variable_type { , block_variable_type }

block_variable_type ::=
variable_identifier

|variable_identifier dimension { dimension }

Verilog Formal Syntax Definition 327

D.3 Primitive instances

D.3.1 Primitive Instantiation and Instances

gate_instantiation ::=
cmos_switchtype [delay3]

cmos_switch_instance { , cmos_switch_instance } ;
|enable_gatetype [drive_strength] [delay3]

enable_gate_instance { , enable_gate_instance } ;
|mos_switchtype [delay3]

mos_switch_instance { , mos_switch_instance } ;
|n_input_gatetype [drive_strength] [delay2]

n_input_gate_instance { , n_input_gate_instance } ;
|n_output_gatetype [drive_strength] [delay2]

n_output_gate_instance { , n_output_gate_instance } ;
|pass_en_switchtype [delay2]

pass_enable_switch_instance { , pass_enable_switch_instance } ;
|pass_switchtype

pass_switch_instance { , pass_switch_instance } ;
|pulldown [pulldown_strength]

pull_gate_instance { , pull_gate_instance } ;
|pullup [pullup_strength]

pull_gate_instance { , pull_gate_instance } ;
cmos_switch_instance ::= [name_of_gate_instance] (output_terminal , input_terminal ,

ncontrol_terminal , pcontrol_terminal)
enable_gate_instance ::= [name_of_gate_instance] (output_terminal , input_terminal ,

enable_terminal)
mos_switch_instance ::= [name_of_gate_instance] (output_terminal , input_terminal ,

enable_terminal)
n_input_gate_instance ::= [name_of_gate_instance] (output_terminal , input_terminal

{, input_terminal })
n_output_gate_instance ::= [name_of_gate_instance] (output_terminal

{ , output_terminal } , input_terminal)
pass_switch_instance ::= [name_of_gate_instance] (inout_terminal , inout_terminal)
pass_enable_switch_instance ::= [name_of_gate_instance]

(inout_terminal , inout_terminal , enable_terminal)
pull_gate_instance ::= [name_of_gate_instance] (output_terminal)
name_of_gate_instance ::= gate_instance_identifier [range]

D.3.2 Primitive Strengths

pulldown_strength ::=
(strength0 , strength1)

|(strength1 , strength0)
|(strength0)

pullup_strength ::=
(strength0 , strength1)

|(strength1 , strength0)
|(strength1)

328 Appendix D

D.3.3 Primitive Terminals

enable_terminal ::= expression
inout_terminal ::= net_lvalue
input_terminal ::= expression
ncontrol_terminal ::= expression
output_terminal ::= net_lvalue
pcontrol_terminal ::= expression

D.3.4 Primitive Gate and Switch Types

cmos_switchtype ::= cmos |rcmos
enable_gatetype ::= bufif0 |bufif1 |notif0 |notif1
mos_switchtype ::= nmos |pmos |rnmos |rpmos
n_input_gatetype ::= and |nand |or |nor |xor |xnor
n_output_gatetype ::= buf |not
pass_en_switchtype ::= tranif0 |tranif1 |rtranif1 |rtranif0
pass_switchtype ::= tran |rtran

D.4 Module and Generated Instantiation

D.4.1 Module Instantiation

module_instantiation ::=
module_identifier [parameter_value_assignment]

module_instance { , module_instance } ;
parameter_value_assignment ::= # (list_of_parameter_assignments)
list_of_parameter_assignments ::=

ordered_parameter_assignment { , ordered_parameter_assignment } |
named_parameter_assignment { , named_parameter_assignment }

ordered_parameter_assignment ::= expression
named_parameter_assignment ::= . parameter_identifier ([expression])
module_instance ::= name_of_instance ([list_of_port_connections])
name_of_instance ::= module_instance_identifier [range]
list_of_port_connections ::=

ordered_port_connection { , ordered_port_connection }
|named_port_connection { , named_port_connection }

ordered_port_connection ::= { attribute_instance } [expression]
named_port_connection ::= { attribute_instance } .port_identifier ([expression])

D.4.2 Generated Instantiation

generated_instantiation ::= generate { generate_item } endgenerate
generate_item_or_null ::= generate_item |;
generate_item ::=

generate_conditional_statement
|generate_case_statement
|generate_loop_statement
|generate_block
|module_or_generate_item

Verilog Formal Syntax Definition 329

generate_conditional_statement ::=
if (constant_expression) generate_item_or_null [else generate_item_or_null]

generate_case_statement ::= case (constant_expression)
genvar_case_item { genvar_case_item } endcase

genvar_case_item ::= constant_expression { , constant_expression } :
generate_item_or_null |default [:] generate_item_or_null

generate_loop_statement ::= for (genvar_assignment ; constant_expression ;
genvar_ assignment)

begin : generate_block_identifier { generate_item } end
genvar_assignment ::= genvar_identifier = constant_expression
generate_block ::= begin [: generate_block_identifier] { generate_item } end

D.5 UDP Declaration and Instantiation

D.5.1 UDP Declaration

udp_declaration ::=
{ attribute_instance } primitive udp_identifier (udp_port_list) ;
udp_port_declaration { udp_port_declaration }
udp_body
endprimitive

|{ attribute_instance } primitive udp_identifier (udp_declaration_port_list) ;
udp_body
endprimitive

D.5.2 UDP Ports

udp_port_list ::= output_port_identifier , input_port_identifier { , input_port_identifier }
udp_declaration_port_list ::=

udp_output_declaration , udp_input_declaration { , udp_input_declaration }
udp_port_declaration ::=

udp_output_declaration ;
|udp_input_declaration ;
|udp_reg_declaration ;

udp_output_declaration ::=
{ attribute_instance } output port_identifier

|{ attribute_instance } output reg port_identifier [= constant_expression]
udp_input_declaration ::= { attribute_instance } input list_of_port_identifiers
udp_reg_declaration ::= { attribute_instance } reg variable_identifier

D.5.3 UDP Body

udp_body ::= combinational_body |sequential_body
combinational_body ::= table combinational_entry { combinational_entry } endtable
combinational_entry ::= level_input_list : output_symbol ;
sequential_body ::= [udp_initial_statement] table sequential_entry { sequential_entry }
endtable
udp_initial_statement ::= initial output_port_identifier = init_val ;
init_val ::= 1’b0 |1’b1 |1’bx |1’bX |1’B0 |1’B1 |1’Bx |1’BX |1 |0
sequential_entry ::= seq_input_list : current_state : next_state ;

330 Appendix D

seq_input_list ::= level_input_list |edge_input_list
level_input_list ::= level_symbol { level_symbol }
edge_input_list ::= { level_symbol } edge_indicator { level_symbol }
edge_indicator ::= (level_symbol level_symbol) |edge_symbol
current_state ::= level_symbol
next_state ::= output_symbol |-
output_symbol ::= 0 |1 |x |X
level_symbol ::= 0 |1 |x |X |? |b |B
edge_symbol ::= r |R |f |F |p |P |n |N |*

D.5.4 UDP Instantiation

udp_instantiation ::= udp_identifier [drive_strength] [delay2]
udp_instance { , udp_instance } ;

udp_instance ::= [name_of_udp_instance] (output_terminal , input_terminal
{ , input_terminal })

name_of_udp_instance ::= udp_instance_identifier [range]

D.6 Behavioral Statements

D.6.1 Continuous Assignment Statements

continuous_assign ::= assign [drive_strength] [delay3] list_of_net_assignments ;
list_of_net_assignments ::= net_assignment { , net_assignment }
net_assignment ::= net_lvalue = expression

D.6.2 Procedural Blocks and Assignments

initial_construct ::= initial statement
always_construct ::= always statement
blocking_assignment ::= variable_lvalue = [delay_or_event_control] expression
nonblocking_assignment ::= variable_lvalue <= [delay_or_event_control] expression
procedural_continuous_assignments ::=

assign variable_assignment
|deassign variable_lvalue
|force variable_assignment
|force net_assignment
|release variable_lvalue
|release net_lvalue

function_blocking_assignment ::= variable_lvalue = expression
function_statement_or_null ::=

function_statement
|{ attribute_instance } ;

D.6.3 Parallel and Sequential Blocks

function_seq_block ::= begin [: block_identifier
{ block_item_declaration }] { function_statement } end

variable_assignment ::= variable_lvalue = expression

Verilog Formal Syntax Definition 331

par_block ::= fork [: block_identifier
{ block_item_declaration }] { statement } join

seq_block ::= begin [: block_identifier
{ block_item_declaration }] { statement } end

D.6.4 Statements

statement ::=
{ attribute_instance } blocking_assignment ;

|{ attribute_instance } case_statement
|{ attribute_instance } conditional_statement
|{ attribute_instance } disable_statement
|{ attribute_instance } event_trigger
|{ attribute_instance } loop_statement
|{ attribute_instance } nonblocking_assignment ;
|{ attribute_instance } par_block
|{ attribute_instance } procedural_continuous_assignments ;
|{ attribute_instance } procedural_timing_control_statement
|{ attribute_instance } seq_block
|{ attribute_instance } system_task_enable
|{ attribute_instance } task_enable
|{ attribute_instance } wait_statement

statement_or_null ::=
statement

|{ attribute_instance } ;
function_statement ::=

{ attribute_instance } function_blocking_assignment ;
|{ attribute_instance } function_case_statement
|{ attribute_instance } function_conditional_statement
|{ attribute_instance } function_loop_statement
|{ attribute_instance } function_seq_block
|{ attribute_instance } disable_statement
|{ attribute_instance } system_task_enable

D.6.5 Timing Control Statements

delay_control ::=
delay_value

|# (mintypmax_expression)
delay_or_event_control ::=

delay_control
|event_control
|repeat (expression) event_control

disable_statement ::=
disable hierarchical_task_identifier ;

|disable hierarchical_block_identifier ;
event_control ::=

@ event_identifier
|@ (event_expression)
|@*
|@ (*)

332 Appendix D

event_trigger ::=
−> hierarchical_event_identifier ;

event_expression ::=
expression

|hierarchical_identifier
|posedge expression
|negedge expression
|event_expression or event_expression
|event_expression , event_expression

procedural_timing_control_statement ::=
delay_or_event_control statement_or_null

wait_statement ::=
wait (expression) statement_or_null

D.6.6 Conditional Statements

conditional_statement ::=
if (expression)

statement_or_null [else statement_or_null]
|if_else_if_statement

if_else_if_statement ::=
if (expression) statement_or_null
{ else if (expression) statement_or_null }
[else statement_or_null]

function_conditional_statement ::=
if (expression) function_statement_or_null
[else function_statement_or_null]

|function_if_else_if_statement
function_if_else_if_statement ::=

if (expression) function_statement_or_null
{ else if (expression) function_statement_or_null }
[else function_statement_or_null]

D.6.7 Case Statements

case_statement ::=
case (expression)

case_item { case_item } endcase
|casez (expression)

case_item { case_item } endcase
|casex (expression)

case_item { case_item } endcase
case_item ::=

expression { , expression } : statement_or_null
|default [:] statement_or_null

function_case_statement ::=
case (expression)

function_case_item { function_case_item } endcase
|casez (expression)

function_case_item { function_case_item } endcase

Verilog Formal Syntax Definition 333

|casex (expression)
function_case_item { function_case_item } endcase

function_case_item ::=
expression { , expression } : function_statement_or_null

|default [:] function_statement_or_null

D.6.8 Looping Statements

function_loop_statement ::=
forever function_statement

|repeat (expression) function_statement
|while (expression) function_statement
|for (variable_assignment ; expression ; variable_assignment)

function_statement
loop_statement ::=

forever statement
|repeat (expression) statement
|while (expression) statement
|for (variable_assignment ; expression ; variable_assignment)

statement

D.6.9 Task Enable Statements

system_task_enable ::= system_task_identifier [(expression { , expression })] ;
task_enable ::= hierarchical_task_identifier [(expression { , expression })] ;

D.7 Specify Section

D.7.1 Specify Block Declaration

specify_block ::= specify { specify_item } endspecify
specify_item ::=

specparam_declaration
|pulsestyle_declaration
|showcancelled_declaration
|path_declaration
|system_timing_check

pulsestyle_declaration ::=
pulsestyle_onevent list_of_path_outputs ;

|pulsestyle_ondetect list_of_path_outputs ;
showcancelled_declaration ::=

showcancelled list_of_path_outputs ;
|noshowcancelled list_of_path_outputs ;

D.7.2 Specify Path Declarations

path_declaration ::=
simple_path_declaration ;

334 Appendix D

|edge_sensitive_path_declaration ;
|state_dependent_path_declaration ;

simple_path_declaration ::=
parallel_path_description = path_delay_value

|full_path_description = path_delay_value
parallel_path_description ::=

(specify_input_terminal_descriptor [polarity_operator] => specify_output_
terminal_descriptor)

full_path_description ::=
(list_of_path_inputs [polarity_operator] *> list_of_path_outputs)

list_of_path_inputs ::=
specify_input_terminal_descriptor { , specify_input_terminal_descriptor }

list_of_path_outputs ::=
specify_output_terminal_descriptor { , specify_output_terminal_descriptor }

D.7.3 Specify Block Terminals

specify_input_terminal_descriptor ::=
input_identifier

|input_identifier [constant_expression]
|input_identifier [range_expression]

specify_output_terminal_descriptor ::=
output_identifier

|output_identifier [constant_expression]
|output_identifier [range_expression]

input_identifier ::= input_port_identifier |inout_port_identifier
output_identifier ::= output_port_identifier |inout_port_identifier

D.7.4 Specify Path Delays

path_delay_value ::=
list_of_path_delay_expressions

|(list_of_path_delay_expressions)
list_of_path_delay_expressions ::=

t_path_delay_expression
|trise_path_delay_expression , tfall_path_delay_expression
|trise_path_delay_expression , tfall_path_delay_expression , tz_path_delay_

expression
|t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_

expression , tz1_path_delay_expression , t1z_path_delay_expression , tz0_
path_delay_expression

|t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_
expression , tz1_path_delay_expression , t1z_path_delay_expression , tz0_
path_delay_ expression
t0x_path_delay_expression , tx1_path_delay_expression , t1x_path_delay_
expression , tx0_path_delay_expression , txz_path_delay_expression , tzx_
path_delay_ expression

t_path_delay_expression ::= path_delay_expression
trise_path_delay_expression ::= path_delay_expression
tfall_path_delay_expression ::= path_delay_expression

Verilog Formal Syntax Definition 335

tz_path_delay_expression ::= path_delay_expression
t01_path_delay_expression ::= path_delay_expression
t10_path_delay_expression ::= path_delay_expression
t0z_path_delay_expression ::= path_delay_expression
tz1_path_delay_expression ::= path_delay_expression
t1z_path_delay_expression ::= path_delay_expression
tz0_path_delay_expression ::= path_delay_expression
t0x_path_delay_expression ::= path_delay_expression
tx1_path_delay_expression ::= path_delay_expression
t1x_path_delay_expression ::= path_delay_expression
tx0_path_delay_expression ::= path_delay_expression
txz_path_delay_expression ::= path_delay_expression
tzx_path_delay_expression ::= path_delay_expression
path_delay_expression ::= constant_mintypmax_expression
edge_sensitive_path_declaration ::=

parallel_edge_sensitive_path_description = path_delay_value
|full_edge_sensitive_path_description = path_delay_value

parallel_edge_sensitive_path_description ::=
([edge_identifier] specify_input_terminal_descriptor =>

specify_output_terminal_descriptor [polarity_operator] : data_
source_expression)

full_edge_sensitive_path_description ::=
([edge_identifier] list_of_path_inputs *>

list_of_path_outputs [polarity_operator] : data_source_expression)
data_source_expression ::= expression
edge_identifier ::= posedge |negedge
state_dependent_path_declaration ::=

if (module_path_expression) simple_path_declaration
|if (module_path_expression) edge_sensitive_path_declaration
|ifnone simple_path_declaration

polarity_operator ::= + |–

D.7.5 System Timing Checks

D.7.5.1 System Timing Check Commands

system_timing_check ::=
$setup_timing_check

|$hold _timing_check
|$setuphold_timing_check
|$recovery_timing_check
|$removal_timing_check
|$recrem_timing_check
|$skew_timing_check
|$timeskew_timing_check
|$fullskew_timing_check
|$period_timing_check
|$width_timing_check
|$nochange_timing_check

$setup_timing_check ::=
$setup (data_event , reference_event , timing_check_limit [, [notify_reg]]) ;

336 Appendix D

$hold _timing_check ::=
$hold (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;

$setuphold_timing_check ::=
$setuphold (reference_event , data_event , timing_check_limit , timing_

check_limit
[, [notify_reg] [, [stamptime_condition] [, [checktime_

condition]
[, [delayed_reference] [, [delayed_data]]]]]]) ;

$recovery_timing_check ::=
$recovery (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;

$removal_timing_check ::=
$removal (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;

$recrem_timing_check ::=
$recrem (reference_event , data_event , timing_check_limit , timing_check_limit

[, [notify_reg] [, [stamptime_condition] [, [checktime_
condition]

[, [delayed_reference] [, [delayed_data]]]]]]) ;
$skew_timing_check ::=
$skew (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;

$timeskew_timing_check ::=
$timeskew (reference_event , data_event , timing_check_limit

[, [notify_reg] [, [event_based_flag] [, [remain_active_flag]]]]) ;
$fullskew_timing_check ::=

$fullskew (reference_event , data_event , timing_check_limit , timing_check_limit
[, [notify_reg] [, [event_based_flag] [, [remain_active_flag]]]]) ;

$period_timing_check ::=
$period (controlled_reference_event , timing_check_limit [, [notify_reg]]) ;

$width_timing_check ::=
$width (controlled_reference_event , timing_check_limit ,
threshold [, [notify_reg]]) ;

$nochange_timing_check ::=
$nochange (reference_event , data_event , start_edge_offset ,

end_edge_offset [, [notify_reg]]) ;

D.7.5.2 System Timing Check Command Arguments

checktime_condition ::= mintypmax_expression
controlled_reference_event ::= controlled_timing_check_event
data_event ::= timing_check_event
delayed_data ::=

terminal_identifier
|terminal_identifier [constant_mintypmax_expression]

delayed_reference ::=
terminal_identifier

|terminal_identifier [constant_mintypmax_expression]
end_edge_offset ::= mintypmax_expression
event_based_flag ::= constant_expression
notify_reg ::= variable_identifier
reference_event ::= timing_check_event
remain_active_flag ::= constant_mintypmax_expression
stamptime_condition ::= mintypmax_expression
start_edge_offset ::= mintypmax_expression

Verilog Formal Syntax Definition 337

threshold ::=constant_expression
timing_check_limit ::= expression

D.7.5.3 System Timing Check Event Definitions

timing_check_event ::=
[timing_check_event_control] specify_terminal_descriptor [&&&
timing_check_condition]

Controlled_timing_check_event ::=
timing_check_event_control specify_terminal_descriptor [&&& timing_check_
condition]

timing_check_event_control ::=
posedge

|negedge
|edge_control_specifier

specify_terminal_descriptor ::=
specify_input_terminal_descriptor

|specify_output_terminal_descriptor
edge_control_specifier ::= edge [edge_descriptor [, edge_descriptor]]
edge_descriptor1 ::=

01
|10
|z_or_x zero_or_one
|zero_or_one z_or_x

zero_or_one ::= 0 |1
z_or_x ::= x |X |z |Z
timing_check_condition ::=

scalar_timing_check_condition
|(scalar_timing_check_condition)

scalar_timing_check_condition ::=
expression

|~ expression
|expression == scalar_constant
|expression === scalar_constant
|expression != scalar_constant
|expression !== scalar_constant

scalar_constant ::=
1’b0 |1’b1 |1’B0 |1’B1 |‘b0 |‘b1 |‘B0 |‘B1 |1 |0

D.8 Expressions

D.8.1 Concatenations

concatenation ::= { expression { , expression } }
constant_concatenation ::= { constant_expression { , constant_expression } }
constant_multiple_concatenation ::= { constant_expression constant_concatenation }
module_path_concatenation ::= { module_path_expression { , module_path_expression } }
module_path_multiple_concatenation ::= { constant_expression module_path_

concatenation }
multiple_concatenation ::= { constant_expression concatenation }

338 Appendix D

net_concatenation ::= { net_concatenation_value { , net_concatenation_value } }
net_concatenation_value ::=

hierarchical_net_identifier
|hierarchical_net_identifier [expression] { [expression] }
|hierarchical_net_identifier [expression] { [expression] } [range_expression]
|hierarchical_net_identifier [range_expression]
|net_concatenation

variable_concatenation ::= { variable_concatenation_value { , variable_concatenation_value } }
variable_concatenation_value ::=

hierarchical_variable_identifier
|hierarchical_variable_identifier [expression] { [expression] }
|hierarchical_variable_identifier [expression] { [expression] } [range_

expression]
|hierarchical_variable_identifier [range_expression]
|variable_concatenation

D.8.2 Function Calls

constant_function_call ::= function_identifier { attribute_instance }
(constant_expression { , constant_expression })

function_call ::= hierarchical_function_identifier { attribute_instance }
(expression { , expression })

genvar_function_call ::= genvar_function_identifier { attribute_instance }
(constant_expression { , constant_expression })

system_function_call ::= system_function_identifier
[(expression { , expression })]

D.8.3 Expressions

base_expression ::= expression
conditional_expression ::= expression1 ? { attribute_instance } expression2 : expression3
constant_base_expression ::= constant_expression
constant_expression ::=

constant_primary
|unary_operator { attribute_instance } constant_primary
|constant_expression binary_operator { attribute_instance } constant_expression
|constant_expression ? { attribute_instance } constant_expression : constant_

expression
|string

constant_mintypmax_expression ::=
constant_expression

|constant_expression : constant_expression : constant_expression
constant_range_expression ::=

constant_expression
|msb_constant_expression : lsb_constant_expression
|constant_base_expression +: width_constant_expression
|constant_base_expression -: width_constant_expression

dimension_constant_expression ::= constant_expression
expression1 ::= expression
expression2 ::= expression

Verilog Formal Syntax Definition 339

expression3 ::= expression
expression ::=

primary
|unary_operator { attribute_instance } primary
|expression binary_operator { attribute_instance } expression
|conditional_expression
|string

lsb_constant_expression ::= constant_expression
mintypmax_expression ::=

expression
|expression : expression : expression

module_path_conditional_expression ::= module_path_expression ? { attribute_instance }
module_path_expression : module_path_expression

module_path_expression ::=
module_path_primary

|unary_module_path_operator { attribute_instance } module_path_primary
|module_path_expression binary_module_path_operator { attribute_instance }

module_path_expression
|module_path_conditional_expression

module_path_mintypmax_expression ::=
module_path_expression

|module_path_expression : module_path_expression : module_path_expression
msb_constant_expression ::= constant_expression
range_expression ::=

expression
|msb_constant_expression : lsb_constant_expression
|base_expression +: width_constant_expression
|base_expression -: width_constant_expression

width_constant_expression ::= constant_expression

D.8.4 Primaries

constant_primary ::=
constant_concatenation

|constant_function_call
|(constant_mintypmax_expression)
|constant_multiple_concatenation
|genvar_identifier
|number
|parameter_identifier
|specparam_identifier

module_path_primary ::=
number

|identifier
|module_path_concatenation
|module_path_multiple_concatenation
|function_call
|system_function_call
|constant_function_call
|(module_path_mintypmax_expression)

primary ::=
number

340 Appendix D

|hierarchical_identifier
|hierarchical_identifier [expression] { [expression] }
|hierarchical_identifier [expression] { [expression] } [range_expression]
|hierarchical_identifier [range_expression]
|concatenation
|multiple_concatenation
|function_call
|system_function_call
|constant_function_call
|(mintypmax_expression)

D.8.5 Expression Left-Side Values

net_lvalue ::=
hierarchical_net_identifier

|hierarchical_net_identifier [constant_expression] { [constant_expression] }
|hierarchical_net_identifier [constant_expression] { [constant_expression] } [

constant_range_expression]
|hierarchical_net_identifier [constant_range_expression]
|net_concatenation

variable_lvalue ::=
hierarchical_variable_identifier

|hierarchical_variable_identifier [expression] { [expression] }
|hierarchical_variable_identifier [expression] { [expression] } [range_

expression]
|hierarchical_variable_identifier [range_expression]
|variable_concatenation

D.8.6 Operators

unary_operator ::=
+|--|!|~|&|~& |||~||^|~^|^~

binary_operator ::=
+|--|*|/|%|==|!=|===|!==|&&||||**

|<|<= |>|>=|&|||^|^~|~^|>>|<<|>>>|<<<
unary_module_path_operator ::=

!|~|&|~&|||~||^|~^|^~
binary_module_path_operator ::=

==|!=|&&||||&|||^|^~|~^

D.8.7 Numbers

number ::=
decimal_number

|octal_number
|binary_number
|hex_number
|real_number

real_number1 ::=
unsigned_number . unsigned_number

Verilog Formal Syntax Definition 341

|unsigned_number [. unsigned_number] exp [sign] unsigned_number
exp ::= e |E
decimal_number ::=

unsigned_number
|[size] decimal_base unsigned_number
|[size] decimal_base x_digit { _ }
|[size] decimal_base z_digit { _ }

binary_number ::= [size] binary_base binary_value
octal_number ::= [size] octal_base octal_value
hex_number ::= [size] hex_base hex_value
sign ::= + |--
size ::= non_zero_unsigned_number
non_zero_unsigned_number1 ::= non_zero_decimal_digit { _ |decimal_digit}
unsigned_number1 ::= decimal_digit { _ |decimal_digit }
binary_value1 ::= binary_digit { _ |binary_digit }
octal_value1 ::= octal_digit { _ |octal_digit }
hex_value1 ::= hex_digit { _ |hex_digit }
decimal_base1 ::= ’[s|S]d |’[s|S]D
binary_base1 ::= ’[s|S]b |’[s|S]B
octal_base1 ::= ’[s|S]o |’[s|S]O
hex_base1 ::= ’[s|S]h |’[s|S]H
non_zero_decimal_digit ::= 1 |2 |3 |4 |5 |6 |7 |8 |9
decimal_digit ::= 0 |1 |2 |3 |4 |5 |6 |7 |8 |9
binary_digit ::= x_digit |z_digit |0 |1
octal_digit ::= x_digit |z_digit |0 |1 |2 |3 |4 |5 |6 |7
hex_digit ::=

x_digit |z_digit |0 |1 |2 |3 |4 |5 |6 |7 |8 |9
|a |b |c |d |e |f |A |B |C |D |E |F

x_digit ::= x |X
z_digit ::= z |Z |?

D.8.8 Strings

string ::= “ { Any_ASCII_Characters_except_new_line } ”

D.9 General

D.9.1 Attributes

attribute_instance ::= (* attr_spec { , attr_spec } *)
attr_spec ::=

attr_name = constant_expression
|attr_name

attr_name ::= identifier

D.9.2 Comments

comment ::=
one_line_comment

|block_comment

342 Appendix D

one_line_comment ::= // comment_text \n
block_comment ::= /* comment_text */
comment_text ::= { Any_ASCII_character }

D.9.3 Identifiers

arrayed_identifier ::=
simple_arrayed_identifier

|escaped_arrayed_identifier
block_identifier ::= identifier
cell_identifier ::= identifier
config_identifier ::= identifier
escaped_arrayed_identifier ::= escaped_identifier [range]
escaped_hierarchical_identifier4 ::=

escaped_hierarchical_branch
{ .simple_hierarchical_branch |.escaped_hierarchical_branch }

escaped_identifier ::= \ {Any_ASCII_character_except_white_space} white_space
event_identifier ::= identifier
function_identifier ::= identifier
gate_instance_identifier ::= arrayed_identifier
generate_block_identifier ::= identifier
genvar_function_identifier ::= identifier /* Hierarchy disallowed */
genvar_identifier ::= identifier
hierarchical_block_identifier ::= hierarchical_identifier
hierarchical_event_identifier ::= hierarchical_identifier
hierarchical_function_identifier ::= hierarchical_identifier
hierarchical_identifier ::=

simple_hierarchical_identifier
|escaped_hierarchical_identifier

hierarchical_net_identifier ::= hierarchical_identifier
hierarchical_variable_identifier ::= hierarchical_identifier
hierarchical_task_identifier ::= hierarchical_identifier
identifier ::=

simple_identifier
|escaped_identifier

inout_port_identifier ::= identifier
input_port_identifier ::= identifier
instance_identifier ::= identifier
library_identifier ::= identifier
memory_identifier ::= identifier
module_identifier ::= identifier
module_instance_identifier ::= arrayed_identifier
net_identifier ::= identifier
output_port_identifier ::= identifier
parameter_identifier ::= identifier
port_identifier ::= identifier
real_identifier ::= identifier
simple_arrayed_identifier ::= simple_identifier [range]
simple_hierarchical_identifier3 ::=

simple_hierarchical_branch [.escaped_identifier]
simple_identifier2 ::= [a-zA-Z_] { [a-zA-Z0-9_$] }
specparam_identifier ::= identifier

Verilog Formal Syntax Definition 343

system_function_identifier5 ::= $[a-zA-Z0-9_$]{ [a-zA-Z0-9_$] }
system_task_identifier5 ::= $[a-zA-Z0-9_$]{ [a-zA-Z0-9_$] }
task_identifier ::= identifier
terminal_identifier ::= identifier
text_macro_identifier ::= simple_identifier
topmodule_identifier ::= identifier
udp_identifier ::= identifier
udp_instance_identifier ::= arrayed_identifier
variable_identifier ::= identifier

D.9.4 Identifier Branches

simple_hierarchical_branch3 ::=
simple_identifier [[unsigned_number]]

[{ .simple_identifier [[unsigned_number]] }]
escaped_hierarchical_branch4 ::=

escaped_identifier [[unsigned_number]]
[{ .escaped_identifier [[unsigned_number]] }]

D.9.5 White Space

white_space ::= space |tab |newline |eof6

Notes

1. Embedded spaces are illegal.

2. A simple_identifier and arrayed_reference shall start with an alpha
or underscore (_) character, shall have at least one character, and
shall not have any spaces.

3. The period (.) in simple_hierarchical_identifier and simple_hierarchi-
cal_branch shall not be preceded or followed by white_space.

4. The period in escaped_hierarchical_identifier and escaped_hierarchi-
cal_branch shall be preceded by white_space, but shall not be followed
by white_space.

5. The $ character in a system_function_identifier or system_task_iden-
tifier shall not be followed by white_space. A system_function_iden-
tifier or system_task_identifier shall not be escaped.

6. End of file.

344 Appendix D

Appendix

E
Verilog Assertion Monitors

OVL assertion checkers are Verilog modules with parameters and ports
that can be used to check the occurrence of certain conditions in a design.
The assertion library must be installed in order to be used with a Verilog
simulation program. The Accelera Standard OVL V1.0 document in the
accompanying CD of this book has details of OVL library installation and
usage. Timing diagrams and examples in this document provide a com-
prehensive document for proper use of this library by Verilog designers.
This appendix serves as a quick reference for OVL assertion checkers
and does not include installation and detailed analysis contained in the
Accelera document.

An OVL assertion checker is invoked by a set of optional parameters
and a set of ports (arguments) that provide conditions that lead to check-
ing what is referred to as the checker’s test expression. A set of integer
values have been defined for the checkers’ optional parameters. When the
OVL library is installed, the Verilog `define construct is used for associ-
ating integer constants with meaningful variable names. Variables used
for assertion parameters and their corresponding values are as follows:

// a c t i v e e d g e s
`define OVL_NOEDGE 0
`define OVL_POSEDGE 1
`define OVL_NEGEDGE 2
`define OVL_ANYEDGE 3

// s e v e r i t y l e v e l s
`define OVL_FATAL 0
`define OVL_ERROR 1
`define OVL_WARNING 2
`define OVL_INFO 3

345

Copyright © 2006 by The McGraw-Hill Publishing Companies, Inc. Click here for terms of use.

// c o v e r a g e l e v e l s
`define OVL_COVER_NONE 0
`define OVL_COVER_ALL 1

// p r o p e r t y t y p e
`define OVL_ASSERT 0
`define OVL_ASSUME 1

// n e c e s s a r y c o n d i t i o n
`define OVL_TRIGGER_ON_MOST_PIPE 0
`define OVL_TRIGGER_ON_FIRST_PIPE 1
`define OVL_TRIGGER_ON_FIRST_NOPIPE 2

// a c t i o n o n n e w s t a r t
`define OVL_IGNORE_NEW_START 0
`define OVL_RESET_ON_NEW_START 1
`define OVL_ERROR_ON_NEW_START 2

// i n a c t i v e l e v e l s
`define OVL_ALL_ZEROS 0
`define OVL_ALL_ONES 1
`define OVL_ONE_COLD 2

In the sections that follow we will give a brief description of OVL
assertion checkers. Parameters and ports (arguments) of each are dis-
cussed here.

E.1 assert_always

The assert_always assertion checker evaluates the expression test_expr
at every positive edge of the triggering event or clock clk. This assertion
contends that the expression always evaluates to TRUE. Should the
expression evaluate to FALSE, the message msg will be reported with
severity severity_level.

assert_always
#(severity_level, property_type, msg, coverage_level)
instance_name (clk, reset_n, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

346 Appendix E

Verilog Assertion Monitors 347

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the asser-
tion.

� reset_n is a signal, that when deasserted, indicates that the assertion
is to be monitored.

� test_expr is the expression being monitored by this instance of
assert_always.

E.2 assert_always_on_edge

The assert_always_on_edge assertion checker monitors the test_expr
at every specified edge of the sampling event and positive edge of clock
clk. It contends that a specified expression will always evaluate to TRUE
on the edge of a sampling event. Whenever test_expr evaluates to
FALSE, the message msg will be reported with the severity_level.

assert_always_on_edge
#(severity_level, edge_type, property_type,

msg, coverage_level)
instance_name (clk, reset_n, sampling_event, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� edge_type determines which type of transition of sampling_event ini-
tiates the check.
� `OVL_POSEDGE, initiates the check if sampling_event transitions

to 1.
� `OVL_NEGEDGE, initiates the check if sampling_event transitions

to 0.
� `OVL_POSEDGE, initiates the check if sampling_event transitions

to 1 or to 0.
� `OVL_NOEDGE (default), always initiates the check and sam-

pling_event is never sampled.
� property_type determines whether to use the assertion as an assert

property or an assume property. The default value is OVL_ASSERT.

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the asser-
tion, provided that an edge of the type indicated by edge type simul-
taneously occurs on the sampling event.

� reset_n is a signal, that when deasserted, indicates that the assertion
is to be monitored.

� sampling_event is an boolean expression, that when TRUE, enables
the monitoring of test_expr.

� test_expr is the expression being monitored by this instance of
assert_always_on_edge.

E.3 assert_change

The assert_change assertion monitors the start_event at every positive
edge of the start event or positive edge of clock clk. It contends that the
test expression will change value within num_cks clock cycles. If this con-
dition does not hold, the message msg will be reported with severity_level.

assert_change
#(severity_level, width, num_cks, action_on_new_start,

property_type, msg, coverage_level)
instance_name (clk, reset_n, start_event, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� width is the width of test_expr, with a default of 1.
� num_cks is the number of clock cycles within which test_expr is to

change.
� action_on_new_start is the method of handling a new start that occurs

before test_expr changes value or num_cks cycles transpire without a
change.
� `OVL_IGNORE_NEW_START (default), ignores all assertions of

start_event after the first assertion has been detected.
� `OVL_RESET_ON_NEW_START, restart monitoring of test_expr if

start_event is asserted in any subsequent clock assertion during
the monitoring of test_expr.

348 Appendix E

� `OVL_ERROR_ON_NEW_START, while monitoring, issue an error
if start_event is asserted in any clock cycle subsequent to the cycle
in which monitoring began.

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the asser-
tion.

� reset_n is a signal, that when deasserted, indicates that the assertion
is to be monitored.

� start_event Starting event that triggers the monitoring of test_expr.
� test_expr the expression being monitored by this instance of

assert_change.

E.4 assert_cycle_sequence

The assert_cycle_sequence assertion contends that a specified
sequence of events occurs. It checks sequences in three ways:

� If necessary_condition is ̀ OVL_TRIGGER_ON_MOST_PIPE (default),
it contends that, if the first num_cks-1 events of event_sequence occur
in sequence, then the final one (event_sequence(0)) also occurs.

� If necessary_condition is `OVL_TRIGGER_ON_FIRST_PIPE, it con-
tends that once the first event (event_sequence(num_cks-1)) occurs, all
the remaining events also occur in sequence. This allows simultane-
ous checking to run, i.e., overlapping of correct sequences is allowed.

� If necessary_condition is `OVL_TRIGGER_ON_FIRST_NOPIPE, it
contends that once the first event (event_sequence(num_cks-1)) occurs,
all the remaining events also occur in sequence. This does not allow
a new checking to begin so long as another checking is in progress, i.e.,
no overlapping is allowed and one sequence has to be completed before
the next checking begins.

assert_cycle_sequence
#(severity_level, num_cks, necessary_condition,

property_type, msg, coverage_level)
instance_name (clk, reset_n, event_sequence)

Verilog Assertion Monitors 349

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� num_cks The number of events in the event_sequence (and the length
of the event_sequence array).

� necessary_condition, either 0 or 1, with a default of 0.
� property_type determines whether to use the assertion as an assert

property or an assume property. The default value is OVL_ASSERT.
� msg is a string expression displayed whenever the assertion fails. It

has a language-dependent default value.
� coverage_level is for enabling or disabling coverage monitoring for the

checker. The default value is OVL_COVERALL.
� clk is a signal whose positive edge triggers the checking of the asser-

tion.
� reset_n is a signal, that when deasserted, indicates that the assertion

is to be monitored.
� event_sequence A Verilog or VHDL concatenation expression, where

each bit represents an event.

E.5 assert_decrement

The assert_decrement assertion checker monitors the expression
test_expr at every positive edge of the clock clk. This assertion contends
that the expression never decreases in value except in steps of value. The
expression test_expr can be any valid integral expression. The check
begins at the first rising edge of clk after reset_n is deasserted.

assert_decrement
#(severity_level, width, value, property_type,

msg, coverage_level)
instance_name (clk, reset_n, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� width is the width of the test expression (default value is 1).
� value permitted decrement value (default value is 1).
� property_type determines whether to use the assertion as an assert

property or an assume property. The default value is OVL_ASSERT.

350 Appendix E

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the asser-
tion.

� reset_n is a signal, that when deasserted, indicates that the assertion
is to be monitored.

� test_expr[width-1:0] is the expression being monitored by this instance
of assert_decrement.

E.6 assert_delta

The assert_delta assertion monitors the expression test_expr at every
positive edge of the triggering event or clock clk. This assertion contends
that the expression never changes value by less than the min value or
more than the max value.

assert_delta
#(severity_level, width, min, max, property_type,

msg, coverage_level)
instance_name (clk, reset_n, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� width is the width of the test expression (default value is 1).
� min is the minimum value by which the test expression can change

in value in one step (default value is 1).
� max is the maximum value by which the test expression can change

in value in one step (default value is 1).
� property_type determines whether to use the assertion as an assert

property or an assume property. The default value is OVL_ASSERT.
� msg is a string expression displayed whenever the assertion fails. It

has a language-dependent default value.
� coverage_level is for enabling or disabling coverage monitoring for the

checker. The default value is OVL_COVERALL.
� clk is a signal whose positive edge triggers the checking of the assertion.

Verilog Assertion Monitors 351

� reset_n is a signal, that when deasserted, indicates that the assertion
is to be monitored.

� test_expr[width-1:0] is the expression being monitored by this instance
of assert_delta.

E.7 assert_even_parity

The assert_even_parity assertion monitors the expression test_expr at
every positive edge of the triggering event or clock clk. This assertion
contends that the expression always has an even number of bits
asserted.

assert_even_parity
#(severity_level, width, property_type,

msg, coverage_level)
instance_name (clk, reset_n, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� width is the width of the test expression (default value is 1).
� property_type determines whether to use the assertion as an assert

property or an assume property. The default value is OVL_ASSERT.
� msg is a string expression displayed whenever the assertion fails. It

has a language-dependent default value.
� coverage_level is for enabling or disabling coverage monitoring for the

checker. The default value is OVL_COVERALL.
� clk is a signal whose positive edge triggers the checking of the asser-

tion.
� reset_n is a signal, that when deasserted, indicates that the assertion

is to be monitored.
� test_expr[width-1:0] is the expression being monitored by this instance

of assert_even_parity.

E.8 assert_fifo_index

The assert_fifo_index assertion monitors the index of a FIFO-like
structure to assure that it never either overflows or underflows. The
assertion supports multiple pushes (writes) into and pops (reads) from
a FIFO within a given clock cycle.

352 Appendix E

assert_fifo_index
#(severity_level, depth, push_width, pop_width, property_type,

msg, coverage_level, simultaneous_push_pop)
instance_name (clk, reset_n, push, pop)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� depth is an integral expression specifying the maximum number of ele-
ments the queue or FIFO can hold.

� push_width is an integral expression defining the maximum number
of pushes (or writes) that is possible in a single clock cycle. The default
value is 1.

� pop_width is an integral expression defining the maximum number
of pops (or reads) that is possible in a single clock cycle. The default
value is 1.

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the assertion.
� reset_n is a signal, that when deasserted, indicates that the assertion

is to be monitored.
� Push[push_width-1:0] is an integral expression indicating the number

of pushes (writes) occurring in the current clock cycle, with a default
value of 1.

� Pop[pop_width-1:0] is an integral expression indicating the number
of pops (reads) occurring in the current clock cycle, with a default
value of 1.

E.9 assert_frame

The assert_frame assertion monitors the timing relationships between
two events in a sequence of events. When start_event is asserted,
test_expr must evaluate to TRUE within a given range of clock cycles.

assert_frame
#(severity_level, min_cks, max_cks, action_on_new_start,

property_type, msg, coverage_level)
instance_name (clk, reset_n, start_event, test_expr)

Verilog Assertion Monitors 353

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� min_cks is the minimum number of clock cycles to wait after
start_event is asserted (the first event in the sequence) for the test_expr
to be asserted (the second event in the sequence). If 0, there is no min-
imum number of cycles to wait prior to checking for the assertion of
test_expr.

� max_cks is the maximum number of clock cycles to wait after
start_event is asserted for test_expr to be asserted.

� action_on_new_start is the method of handling a new start that occurs
before test_expr changes value or num_cks cycles transpire without a
change.
� `OVL_IGNORE_NEW_START (default), ignores all assertions of

start_event after the first assertion has been detected.
� `OVL_RESET_ON_NEW_START, restart monitoring of test_expr if

start_event is asserted in any subsequent clock assertion during
the monitoring of test_expr.

� `OVL_ERROR_ON_NEW_START, while monitoring, issue an error
if start_event is asserted in any clock cycle subsequent to the cycle
in which monitoring began.

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the assertion.
� reset_n is a signal, that when deasserted, indicates that the assertion

is to be monitored.
� start_event is an expression defining the first event in the sequence

of events.
� test_expr is an expression defining the second event in the sequence

of events.

E.10 assert_handshake

The assert_handshake assertion monitors the handshake signals req
and ack at every positive edge of either the triggering event or clk.

354 Appendix E

assert_handshake
#(severity_level, min_ack_cycle, max_ack_cycle,

req_drop, deassert_count, max_ack_length, property_type,
msg, coverage_level)

instance_name (clk, reset_n, req, ack)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� min_ack_cycle is an integer-valued expression that is nonnegative.
Specifies that ack occurs no sooner than min_ack_cycle clock cycles
after the clock cycle in which req occurs.

� max_ack_cycle is an integer-valued expression that is nonnegative.
Specifies that ack does not occur after max_ack_cycle clock cycles after
the clock cycle in which req occurs.

� req_drop is an integer-valued expression. If equal to one, assert_
handshake ensures that req remains asserted until ack is asserted.

� deassert_count is a nonnegative, integer-valued expression. If greater
than 0, assert_handshake ensures that req becomes deasserted
within deassert_count clock cycles after the deasertion of ack. (This
check guards against a stuck-active req.)

� max_ack_length is a nonnegative, integer-valued expression. If greater
than 0, assert_handshake verifies that ack is not asserted for more
than max_ack_length clock cycles without being deasserted. (This
check guards against a stuck-active ack.)

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the assertion.
� reset_n is a signal, that when deasserted, indicates that the assertion

is to be monitored.
� req is the signal defining the start of the handshake.
� ack is the signal defining the end of the handshake.

Verilog Assertion Monitors 355

E.11 assert_implication

The assert_implication assertion monitors the antecedent expression.
Whenever it evaluates TRUE, the assertion contends that the conse-
quence is also TRUE.

assert_implication
#(severity_level, property_type, msg, coverage_level)
instance_name (clk, reset_n, antecedent_expr,

consequence_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the assertion.
� reset_n is a signal, that when deasserted, indicates that the assertion

is to be monitored.
� antecedent_expr is an expression that, when TRUE, triggers the mon-

itoring of the consequence expression.
� consequence_expr is the expression that is monitored when the

antecedent expression is TRUE.

E.12 assert_increment

The assert_increment assertion monitors the expression test_expr at
every positive edge of the triggering event or clock clk. This assertion
contends that the expression never increases in value except by value.

assert_increment
#(severity_level, width, value, property_type,

msg, coverage_level)
instance_name (clk, reset_n, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

356 Appendix E

� width is the width of the test expression (default value is 1).
� value is permitted increment value (default value is 1).
� property_type determines whether to use the assertion as an assert

property or an assume property. The default value is OVL_ASSERT.
� msg is a string expression displayed whenever the assertion fails. It

has a language-dependent default value.
� coverage_level is for enabling or disabling coverage monitoring for the

checker. The default value is OVL_COVERALL.
� clk is a signal whose positive edge triggers the checking of the assertion.
� reset_n is a signal, that when deasserted, indicates that the assertion

is to be monitored.
� test_expr[width-1:0] is the expression being monitored by this instance

of assert_increment.

E.13 assert_never

The assert_never assertion evaluates the expression test_expr at every
positive edge of the triggering event or clock clk. This assertion contends
that the expression never evaluates to TRUE. Should text_expr evalu-
ate to TRUE, the message msg will be reported with severity_level.

assert_never
#(severity_level, property_type, msg, coverage_level)
instance_name (clk, reset_n, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the assertion.
� reset_n is a signal, that when deasserted, indicates that the assertion

is to be monitored.
� test_expr is the expression being monitored by this instance of

assert_never.

Verilog Assertion Monitors 357

E.14 assert_next

The assert_next assertion verifies that a specified expression is TRUE
a specified number of cycles after a start event. When start_event asserts,
then test_expr must assert exactly num_cks clock cycles later. This asser-
tion supports overlapping sequences of events. The reassertion of
start_event fewer than num_cks cycles after a given assertion of
start_event defines an overlapping sequence of events. The sequences
must terminate by assertions of test_expr as defined by the values of
start_event and num_cks that initiated each sequence.

assert_next
#(severity_level, num_cks, check_overlapping,

check_missing_start, property_type,
msg, coverage_level)

instance_name (clk, reset_n, start_event, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� num_cks is an integer-valued, nonnegative expression that specifies
the number of clock cycles that must elapse between the assertion of
the start_event and the test_expr.

� check_overlapping, if 0, overlap checking is performed. After a start
and during the wait time for test_expr, another start_event will not
cause a new search for test_expr to be initiated. If check_overlapping
is 1, then these multiple overlapping sequences will be independently
verified.

� check_missing_start, if 1, verifies that the exact sequence of the asser-
tion of start_event followed exact num_cks clock periods later, are
then followed by the assertion of test_expr. If test_expr is asserted out
of this sequence, assert_next fails. If check_missing_start is 0, an out
of sequence test_expr is allowed, and the only requirement is that
after start_event and num_cks clocks, test_expr also becomes 1.

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the assertion.

358 Appendix E

� reset_n is a signal, that when deasserted, indicates that the assertion
is to be monitored.

� start_event is the expression whose assertion defines the start of the
event sequence.

� test_expr is the expression whose assertion defines the end of the
event sequence.

E.15 assert_no_overflow

The assert_no_overflow assertion evaluates the expression test_expr
at every positive edge of the triggering event or clock clk. This assertion
contends that the expression never takes on a value outside of the range
min to max, inclusive.

assert_no_overflow
#(severity_level, width, min, max, property_type,

msg, coverage_level)
instance_name (clk, reset_n, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� width is an integer-valued, nonnegative expression describing the
width of test_expr. Implementations are allowed, but not required to
restrict the maximum value of width.

� min The permissible minimum value of test_expr. The default value
is 0.

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

� max The permissible maximum value of test_expr.
� msg is a string expression displayed whenever the assertion fails. It

has a language-dependent default value.
� coverage_level is for enabling or disabling coverage monitoring for the

checker. The default value is OVL_COVERALL.
� clk is a signal whose positive edge triggers the checking of the assertion.
� reset_n is a signal, that when deasserted, indicates that the assertion

is to be monitored.
� test_expr[width-1:0] the expression being monitored by this instance

of assert_no_overflow.

Verilog Assertion Monitors 359

E.16 assert_no_transition

The assert_no_transition assertion checks the expression test_expr at
every positive edge of the triggering event or clock clk. When the value
of text_expr is equal to start_state (i.e., the machine is in the start state)
this assertion contends that test_expr never transits to the value of
next_state (i.e., the machine stays in the start state). The width param-
eter defines the size of test_expr.

assert_no_transition
#(severity_level, width, property_type, msg, coverage_level)

instance_name (clk, reset_n, test_expr, start_state,
next_state)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� width is an integer-valued, nonnegative expression describing the
width of test_expr. The default value is 1.

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the
assertion.

� reset_n is a signal, that when deasserted, indicates that the assertion
is to be monitored.

� test_expr[width-1:0] is the expression being monitored by this instance
of assert_no_transition.

� start_state[width-1:0] is the value of test_expr that triggers the assertion.
� next_state[width-1:0] is the value of test_expr being guarded against.

E.17 assert_no_underflow

The assert_no_underflow assertion evaluates the expression test_expr
at every positive edge of the triggering event or clock clk. This assertion
contends that the expression never takes on a value outside of the range
min to max, exclusive.

360 Appendix E

assert_no_underflow
#(severity_level, width, min, max, property_type,

msg, coverage_level)
instance_name (clk, reset_n, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� width is an integer-valued, nonnegative expression describing the
width of test_expr. Implementations are allowed, but not required to
restrict the maximum value of width.

� min is the permissible minimum value of test_expr. The default value
is 0.

� max is the permissible maximum value of test_expr.
� property_type determines whether to use the assertion as an assert

property or an assume property. The default value is OVL_ASSERT.
� msg is a string expression displayed whenever the assertion fails. It

has a language-dependent default value.
� coverage_level is for enabling or disabling coverage monitoring for the

checker. The default value is OVL_COVERALL.
� clk is a signal whose positive edge triggers the checking of the assertion.
� reset_n is a signal, that when deasserted, indicates that the assertion

is to be monitored.
� test_expr[width-1:0] is the expression being monitored by this instance

of assert_no_underflow.

E.18 assert_odd_parity

The assert_odd_parity assertion monitors the expression test_expr at
every positive edge of the triggering event or clock clk. This assertion
contends that the expression always has an odd number of bits asserted.

assert_odd_parity
#(severity_level, width, property_type, msg, coverage_level)
instance_name (clk, reset_n, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� width is the width of the test expression (default value is 1).

Verilog Assertion Monitors 361

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the assertion.
� reset_n is a signal, that when deasserted, indicates that the assertion

is to be monitored.
� test_expr[width-1:0] is the expression being monitored by this instance

of assert_odd_parity.

E.19 assert_one_cold

The assert_one_cold assertion monitors the expression test_expr at
every positive edge of the triggering event or clock clk. This assertion
contends that the expression always has either exactly one bit
deasserted or has the appropriate inactive state (either all zero bits or
all one bits), depending on the value of the inactive parameter.

assert_one_cold
#(severity_level, width, inactive, property_type,

msg, coverage_level)
instance_name (clk, reset_n, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� width is the width of the test expression (default value is 1).
� inactive specifies the inactive state of test_expr. It has three possible

values:
� `OVL_ALL_ZEROS, allows an all-zero value of test_expr without the

generation of a report.
� `OVL_ALL_ONES, allows an all-one value of test_expr without the

generation of a report.
� `OVL_ONE_COLD (default) allows no inactive state. At all times,

test_expr must have exactly one bit deasserted.
� property_type determines whether to use the assertion as an assert

property or an assume property. The default value is OVL_ASSERT.

362 Appendix E

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the assertion.
� reset_n is a signal, that when deasserted, indicates that the assertion

is to be monitored.
� test_expr[width-1:0] is the expression being monitored by this instance

of assert_one_cold.

E.20 assert_one_hot

The assert_one_hot assertion monitors the expression test_expr at
every positive edge of the triggering event or clock clk. This assertion
contends that the expression always has exactly one bit asserted.

assert_one_hot
#(severity_level, width, property_type, msg, coverage_level)
instance_name (clk, reset_n, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� width is the width of the test expression (default value is 1).
� property_type determines whether to use the assertion as an assert

property or an assume property. The default value is OVL_ASSERT.
� msg is a string expression displayed whenever the assertion fails. It

has a language-dependent default value.
� coverage_level is for enabling or disabling coverage monitoring for the

checker. The default value is OVL_COVERALL.
� clk is a signal whose positive edge triggers the checking of the assertion.
� reset_n is a signal, that when deasserted, indicates that the assertion

is to be monitored.
� test_expr[width-1:0] is the expression being monitored by this instance

of assert_one_hot.

E.21 assert_proposition

The assert_proposition assertion continually monitors the expres-
sion test_expr; unlike assert_always, test_expr is not sampled by a
clock. This assertion contends that the expression always evaluates to

Verilog Assertion Monitors 363

TRUE. Should the expression evaluate to FALSE, the message msg will
be reported with severity_level.

assert_proposition
#(severity_level, property_type, msg, coverage_level)
instance_name (reset_n, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� reset_n is a signal, that when deasserted, indicates that the assertion
is to be monitored.

� test_expr the expression being monitored by this instance of
assert_proposition.

E.22 assert_quiescent_state

The assert_quiescent_state assertion continually monitors the sample
event on every rising edge of clk. This assertion contends that state_expr
is equal to check_value whenever sample_event is asserted, and option-
ally when the entire system is quiescent.

assert_quiescent_state
#(severity_level, width, property_type, msg, coverage_level)
instance_name (clk, reset_n, state_expr, check_value,

sample_event)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� width is the width of the test expression (default value is 1).
� property_type determines whether to use the assertion as an assert

property or an assume property. The default value is OVL_ASSERT.
� msg is a string expression displayed whenever the assertion fails. It

has a language-dependent default value.

364 Appendix E

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the assertion.
� reset_n is a signal, that when deasserted, indicates that the assertion

is to be monitored.
� state_expr[width-1:0] is the expression being monitored by this

instance of assert_quiescent_state.
� check_value[width-1:0] is the value of state_expr that indicates qui-

escence.
� sample_event when TRUE, causes the assertion to check state_expr.

E.23 assert_range

The assert_range assertion evaluates the expression test_expr at every
positive edge of the triggering event or clock clk. This assertion contends
that the expression never takes on a value outside of the range min to
max, inclusive.

assert_range
#(severity_level, width, min, max, property_type,

msg, coverage_level)
instance_name (clk, reset_n, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� width is an integer-valued, nonnegative expression describing the
width of test_expr.

� min is the permissible minimum value of test_expr. The default value
is 0.

� max is the permissible maximum value of test_expr. The default value
is 2**width – 1. max must be greater than or equal to min.

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the assertion.

Verilog Assertion Monitors 365

� reset_n is a signal, that when deasserted, indicates that the assertion
is to be monitored.

� test_expr[width-1:0] is the expression being monitored by this instance
of assert_range.

E.24 assert_time

The assert_time assertion continually evaluates the expression
test_expr. This assertion contends that the expression remains TRUE
for at least a specified number of clock periods.

assert_time
#(severity_level, num_cks, action_on_new_start,

property_type, msg, coverage_level)
instance_name (clk, reset_n, start_event, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� num_cks specifies the minimum number of clock cycles that test_expr
must hold each time it asserts.

� action_on_new_start is the method of handling a new start that occurs
before test_expr changes value or num_cks cycles transpire without a
change.
� `OVL_IGNORE_NEW_START (default), ignores all assertions of

start_event after the first assertion has been detected.
� `OVL_RESET_ON_NEW_START, restart monitoring of test_expr if

start_event is asserted in any subsequent clock assertion during
the monitoring of test_expr.

� `OVL_ERROR_ON_NEW_START, while monitoring, issue an error
if start_event is asserted in any clock cycle subsequent to the cycle
in which monitoring began.

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the assertion.

366 Appendix E

� reset_n is a signal, that when deasserted, indicates that the assertion
is to be monitored.

� start_event is the event that, when asserted, triggers the monitoring
of test_expr.

� test_expr is the expression being monitored by this instance of
assert_time.

E.25 assert_transition

The assert_transition assertion monitors the expression test_expr at
every positive edge of the triggering event or clock clk. When the value
of test_expr is equal to start_state this assertion contends that, if test_expr
changes value, it will change to the value of end_state. The width param-
eter defines the size of test_expr.

assert_transition
#(severity_level, width, property_type, msg, coverage_level)
instance_name (clk, reset_n, test_expr, start_state,

next_state)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� width is an integer-valued, nonnegative expression describing the
width of test_expr. The default value is 1.

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the assertion.
� reset_n is a signal, that when deasserted, indicates that the assertion

is to be monitored.
� test_expr[width-1:0] is the expression being monitored by this instance

of assert_transition.
� start_state[width-1:0] is the value of test_expr that triggers the assertion.
� next_state[width-1:0] is the value that test_expr should assume in the

next clock cycle.

Verilog Assertion Monitors 367

E.26 assert_unchange

The assert_unchange assertion evaluates the expression test_expr at
every positive edge of the triggering event or clock clk. This assertion
contends that, when triggered, test_expr remains stable for at least a
specified number of clock periods.

assert_unchange
#(severity_level, num_cks, action_on_new_start,

property_type, msg, coverage_level)
instance_name (clk, reset_n, start_event, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� num_cks specifies the minimum number of clock cycles that test_expr
must remain unchanged each time start_event is asserted.

� action_on_new_start is the method of handling a new start that occurs
before test_expr changes value or num_cks cycles transpire without a
change.
� `OVL_IGNORE_NEW_START (default), ignores all assertions of

start_event after the first assertion has been detected.
� `OVL_RESET_ON_NEW_START, restart monitoring of test_expr if

start_event is asserted in any subsequent clock assertion during
the monitoring of test_expr.

� `OVL_ERROR_ON_NEW_START, while monitoring, issue an error
if start_event is asserted in any clock cycle subsequent to the cycle
in which monitoring began.

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the assertion.
� reset_n is a signal, that when deasserted, indicates that the assertion

is to be monitored.
� start_event is the event that, when asserted, triggers the monitoring

of test_expr.
� test_expr[width-1:0] is the expression being monitored by this instance

of assert_unchange.

368 Appendix E

E.27 assert_width

The assert_width assertion continually evaluates the expression
test_expr. This assertion contends that the expression remains TRUE
for at least a specified minimum number of clock periods and no longer
than a specified maximum number of clock periods.

assert_width
#(severity_level, min_cks, max_cks, property_type,

msg, coverage_level)
instance_name (clk, reset_n, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� min_cks specifies the minimum number of clock cycles that test_expr
must hold each time it asserts. If 0, there is no minimum number of
clocks; test_expr may be asserted at start_event.

� max_cks specifies the maximum number of clock cycles that test_expr
must hold each time it asserts. If 0, there is no maximum check;
test_expr may deassert at any time after it asserts.

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the assertion.
� reset_n is a signal, that when deasserted, indicates that the assertion

is to be monitored.
� start_event is the event that, when asserted, triggers the monitoring

of test_expr.
� test_expr is the expression being monitored by this instance of

assert_width.

E.28 assert_win_change

The assert_win_change assertion continually monitors start_event at
every positive edge of the triggering event or clock clk. When start_event
is asserted, this assertion monitors the expression test_expr to assure

Verilog Assertion Monitors 369

that it changes value prior to the assertion of the end_event. When
start_event asserts, this assertion verifies that the test_expr changes
value on a clock edge that occurs before or coincident with the next
assertion of end_event. Once test_expr changes value, it need not remain
stable until end_event asserts.

assert_win_change
#(severity_level, width, property_type, msg, coverage_level)
instance_name (clk, reset_n, start_event, test_expr,

end_event)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� width is an integer-valued, nonnegative expression describing the
width of test_expr. The default value is 1.

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the assertion.
� reset_n is a signal, that when deasserted, indicates that the assertion

is to be monitored.
� start_event is the event that, when asserted, triggers the monitoring

of test_expr.
� test_expr[width-1:0] is the expression being monitored by this instance

of assert_win_change.
� end_event is the event that, when asserted, terminates the monitor-

ing of test_expr.

E.29 assert_win_unchange

The assert_win_unchange assertion continually monitors start_event
at every positive edge of the triggering event or clock clk. When
start_event is asserted, this assertion monitors the expression test_expr
to assure that it does not change value prior to the assertion of
end_event.

370 Appendix E

assert_win_unchange
#(severity_level, width, property_type, msg, coverage_level)
instance_name (clk, reset_n, start_event, test_expr,

end_event)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� width is an integer-valued, nonnegative expression describing the
width of test_expr. The default value is 1.

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the
assertion.

� reset_n is a signal, that when deasserted, indicates that the assertion
is to be monitored.

� start_event is the event that, when asserted, triggers the monitoring
of test_expr.

� test_expr[width-1:0] is the expression being monitored by this instance
of assert_win_unchange.

� end_event is the event that, when asserted, terminates the monitor-
ing of test_expr.

E.30 assert_window

The assert_window assertion continually monitors the start_event at
every positive edge of the triggering event or clock clk. When start_event
is asserted, this assertion contends that the expression test_expr remains
TRUE at every subsequent positive clock edge until the assertion of the
end_event.

assert_window
#(severity_level, property_type, msg, coverage_level)
instance_name (clk, reset_n, start_event, test_expr,

end_event)

Verilog Assertion Monitors 371

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� property_type determines whether to use the assertion as an assert
property or an assume property. The default value is OVL_ASSERT.

� msg is a string expression displayed whenever the assertion fails. It
has a language-dependent default value.

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the
assertion.

� reset_n is a signal, that when deasserted, indicates that the assertion
is to be monitored.

� start_event is the event that, when asserted, triggers the monitoring
of test_expr.

� test_expr is the expression being monitored by this instance of
assert_window.

� end_event is the event that, when asserted, terminates the monitor-
ing of test_expr.

E.31 assert_zero_one_hot

The assert_zero_one_hot assertion checker checks the expression
test_expr at every positive edge of the triggering event or clock clk. This
assertion contends that the expression always has at most one bit
asserted.

assert_zero_one_hot
#(severity_level, width, property_type, msg, coverage_level)
instance_name (clk, reset_n, test_expr)

� severity_level is for handling an assertion violation. The values are
OVL_FATAL, OVL_ERROR, OVL_WARNING, or OVL_INFO. The
default value is OVL_ERROR.

� width is the width of the test expression (default value is 1).
� property_type determines whether to use the assertion as an assert

property or an assume property. The default value is OVL_ASSERT.
� msg is a string expression displayed whenever the assertion fails. It

has a language-dependent default value.

372 Appendix E

� coverage_level is for enabling or disabling coverage monitoring for the
checker. The default value is OVL_COVERALL.

� clk is a signal whose positive edge triggers the checking of the assertion.
� reset_n is a signal, that when deasserted, indicates that the assertion

is to be monitored.
� test_expr[width-1:0] is the expression being monitored by this instance

of assert_zero_one_hot.

Verilog Assertion Monitors 373

This page intentionally left blank

Index

375

sign, 24, 38
$array, 156
$async$nand$array, 75, 156
$asynch, 156
$bitstoreal, 75
$display, 33, 34, 44, 67–68, 73, 201,

203–204
$displayb, 45, 200
$fflush, 278, 280
$fgetc, 73
$fgets, 279, 280
$finish, 74, 84, 85, 106, 193, 197,

198, 205,
$fopen, 73, 277, 280, 303, 304
$fread, 73
$frewind, 73
$fscanf, 73, 278–280
$fseek, 73, 278–280
$hold, 150
$itor, 75
$monitor, 73, 200, 201, 248, 249
$nand, 156
$nochange, 74
$period, 150
$printtimescale, 74
$random, 76, 198, 204, 205
$readmemb, 153, 156, 181
$readmemh, 73, 153–155, 187,

263, 302–304
$realtime, 76
$realtobits, 75
$rtoi, 75
$scanf, 73
$setup, 44, 149–150

$setuphold, 150
$sformat, 302–304
$sign, 73
$sscanf, 73
$stime, 76
$stop, 6, 41, 74, 197, 202–206, 249,

263, 277, 301
$strobe, 203, 204
$swrite, 73
$sync_async$and_or$array_plane,

74
$time, 33, 67, 76, 200, 201, 249
$time, 57
$timeformat, 74
$timescale, 22, 23, 44, 74
$width, 150
%b, 200
%t, 200
%v, 248
@ sign, 27
`define, 172
`celldefine, 72
`celldefine, 72
`default–nettype, 71
`default–nettype, 71
`define, 71–72, 175
`else, 72
`endcelldefine, 72
`endif, 72
`ifdef, 72
`include, 71, 110
`nounconnected_drive, 72
`resetall, 71, 72
`timescale, 71, 92

Copyright © 2006 by The McGraw-Hill Publishing Companies, Inc. Click here for terms of use.

`unconnected_drive, 72
`undef, 72

2-to-1 Multiplexer, 230, 231, 250
4-bit Adder, 95, 96,
4-bit Comparator, 107, 108, 133
4-bit Shifter, 232
4-value logic, See four-value logic

abstraction level, 11, 15, 102
Accellera, 208
add operation, 109
add-and-shift, 253, 255
address range, 46
Altera, 10, 184
ALU, 27–28, 121, 124, 125, 130,

132, 192, 269, 281, 285, 286
always, 65
always block, 26, 27, 30, 31, 34, 68,

113, 114, 116, 118, 129, 130
always statement, 21, 24–25, 34,

113, 117, 129, 139
ambiguity, 48
ambiguous conditions, 105
ambiguous strength, 250
ambiguous value, 105, 106, 173, 176
analysis, 7
and primitive, 82, 87
and-or, 74
antecedent, 217
AOI, 229–230
application-specific integrated

circuits, See ASIC
arithmetic, 48
arithmetic expressions, 108, 119
arithmetic logic unit, See ALU
arithmetic operators, 48, 108, 162
arithmetic shift, 51
array, 46, 153
array declaration, 46, 47
array indexing, 58
array indexing, 58, 96
array of instances, 96, 97
array_plane, 74
ASIC, 2, 3, 7, 9, 10, 223
assert_one_hot, 212, 213
assert_always, 208–210, 220
assert_always_on_edge, 208

assert_change, 208, 211
assert_cycle_sequence, 208, 213,

214, 216
assert_decrement, 208
assert_delta, 208
assert_even_parity, 208
assert_fifo_index, 208
assert_frame, 208
assert_handshake, 208
assert_implication, 208, 217, 219
assert_increment, 208
assert_never, 208
assert_never_at_x_or_z, 208
assert_next, 208, 215–218
assert_no_overflow, 208, 218–220
assert_no_transition, 208
assert_no_underflow, 208
assert_odd_parity, 208
assert_one_cold, 208
assert_one_hot, 208, 211–213
assert_proposition, 208
assert_quiescent_state, 208
assert_range, 208
assert_time, 208
assert_transition, 208
assert_unchange, 208
assert_width, 208
assert_win_change, 208
assert_win_unchange, 208
assert_window, 208
assert_zero_one_hot, 208
assertion, 6, 138
assertion library, 207
assertion module, 207, 209
assertion monitor, 6, 207–210, 298
assertion templates, 216
assertion verification, 3, 4, 6, 191,

207, 208,
assign statement, 20, 22, 23, 25,

38, 39–40, 102–105, 109–114,
128, 132

assign-deassign, 148
asynchronous, 74, 157, 180, 217
asynchronous circuit, 30
asynchronous clear, 185
asynchronous control, 146
asynchronous data signal, 30
asynchronous PLA, 75

376 Index

asynchronous preset, 185
asynchronous reset, 149
asynchronous set, 145, 149
asynchronous set and reset, 144, 145,

149, 153, 164, 187, 188, 217
auxiliary logic, 213

barrel shifter, 233, 234
base specification, 45
based numbers, 57
base-identifier, 45
basic operators, 48
BCD, 133, 209
BCD counter, 210
begin, 25
begin-end bracketing, 115, 116, 118
behavioral level, 12, 19, 112,144
behavioral description, 31, 35, 113, 186
behavioral model, 3, 142
behavioral simulation, 5
behavioral synthesis, 129
behavioral Verilog, 2
bidirectional, 12
bidirectional, 153, 160, 225, 235, 239,

253, 259, 262
bidirectional switches, 12, 225, 250
bidirectionality, 154, 155
binary, 44
binary multiplication, 254
binding, 8–9
bit-select, 58–59
bitwise operators, 50, 51, 102, 103
blocking assignment, 24, 65–67,

78–79, 117
blocking procedural assignments,

67, 110, 116, 130
blocking procedural assignments, 110
boolean operations, 48, 50
bracketing, 114
buf primitive, 86, 225, 244–245
buffered data application, 205
Bufif1, 83, 84, 86
built-in gate, 242
bus contention, 110
bus resolution, 12
bus specifications, 22
bus structure, 110
bussing, 129

CAD tools, 1
Cadence Design Systems, 11
capacitive, 42, 55
capacitive model, 136
capacitive net, 242, 250
capacitive network, 243
capacitive storage, 136
capacitive wire, 55
cascadable comparator, 107, 108
cascading, 107
case, 118, 120, 122, 125
case alternative, 26, 32, 120, 122, 172
case default, 130
case equality operators, 49
case expression, 120–122, 172, 273
case inequality operators, 49
case statement, 26–28, 31, 32, 120,

121, 125, 131, 160, 273, 279,
288, 295

casex, 122
casez, 121, 122
charge, 241
charge storage, 12
charge strength, 242–243, 247
clocked SR-latch, 138, 139, 140
clocking, 171
CMOS, 224, 225
CMOS flip-flop, 56
CMOS gates, 226, 227
CMOS NAND, 229
code format, 41
combinational, 181
combinational block, 177
combinational circuit, 81, 129
combinational circuit testing, 192
combinational UDP, 87, 139
comments, 16, 41, 208
comparator, 104, 107
compare, 124, 125, 128
compilation, 7
compiler directives, 44, 71–72, 76
complimentary metal oxide

semiconductor (CMOS), 12
component description, 22
concatenation, 157, 181
concatenation operator, 26, 48, 52,

104, 122
concurrency, 39, 40

Index 377

concurrent, 13, 26, 33, 39, 97
concurrent assignments, 13, 129
concurrent body, 26, 39, 40, 61
concurrent statements, 40, 43, 62,

97, 103, 178
concurrent subcomponents, 39
conditional assignment, 106
conditional expression, 20, 155, 291
conditional jump, 307
conditional operation, 20, 105–106
conditional operator, 52–53, 107
conditional statements, 128
conflict, 42
conflict x, 232
connection list, 94
consequence, 217
console, 34
constant part-select, 58
continuous assignments, 3, 43,

53, 56, 60, 61, 64, 65, 69, 70,
128, 140

control/data partitioning, 16
control part/unit, 16, 17
controller, 29, 253, 256, 270, 287
converting reals, 75
counter, 24–25, 161
cross-couple SRAM memory, 237
curly brackets, 26
current state, 171
custom IC, 2, 3, 7, 9, 10

data/control partitioning, 265
data components, 22
data files, 263
data part, 16, 17
data part/path, See datapath
data types, 37, 42, 54, 59, 60, 65,

70, 73, 76,
Datapath, 16, 17, 253, 256–261,

265–276, 287
deassign, 70, 148, 149
decimal, 44
default, 28, 120, 121, 160, 172,

176, 248
default delay, 226
default else, 145
default net type, 82
default strength, 238, 242
defparam, 91

delay, 5, 12, 23–25, 38, 64, 66
delay control, 66, 115, 116, 147
delay control statement, 66, 115, 116
delay expression, 115
delay formats, 88, 92, 100, 103
delay parameters, 56, 61, 85–87, 100
delay paths, 38
delay specification, 61–62, 87, 88, 93,

99, 101, 116
delay3, 88
design entry, 3
design flow, 2
design validation, 4
design verification, 3, 206
designer discipline, 208
dirty page, 302
display format specifications, 200
display tasks, 73
distribuited delay, 99–102
distributed delay, gate, 100
DoD, 11
Drain, 226
drive, 241
drive strength, 242–243
D-type flip-flop, 144–150, 184,

187, 240,
dynamic arguments, 209, 210
dynamic cell, 239
dynamic memory, 234
dynamic RAM, 239

EDA, 1, 3, 11, 208
EDA environments, 3
electronic design automation,

See EDA
Elements of Verilog, 18
else part, 123
end keywords, 114
endfunction, 109
endmodule, 18, 42
endprimitive, 86
endspecify, 99
endtable, 88
endtask, 277
equality operator, 48–50, 107
even control statement, 144, 146, 199
event control, 65, 66, 113–115,

119, 199
event driven simulation, 62

378 Index

event expression, 144
event sequence, 216
executable comments, 208
external data files, 153, 220
external files, 263
external memory file, 162

fall delay, 88, 90, 91, 103
falling edge, 23, 211
fault simulation, 11, 13, 19
feedback model, 136
feedback path, 237
Fetch, 270, 293
field programmable logic device,

See FPLD
FIFO queue, 167
file I/O, 276
file I/O tasks, 73, 276
file output, 73, 281
finite state machine, 259
flip-flop, 22–24, 42, 139, 150, 240
flip-flop modeling, 144
flow control, 113, 115
for loop, 118, 123
for procedural statement, 123
for statement, 98, 122, 123
force, 70
force and release, 70
forcing 0, 42
forcing 1, 42
forever loop, 199
fork-join, 146–147
formal verification, 1, 3–4, 6, 13,

206–208
four value logic, 12, 41, 62, 81, 241
FPGA, 7
FPLD, 3, 7, 9, 10
full adder, 25, 39, 40, 57, 93, 94,

97–100, 104, 117, 118, 127,
full adder tester, 41
full-path, 100
function, 34, 44, 72, 75, 109–110
functional description, 78
functional registers, 157
functional specification, 7
functional verification, 33, 127

Gate, 227
gate capacitance, 234–235

gate delays, 5, 38
gate level, 12, 127, 132, 234
gate level delays, 111, 142
gate level logic, 85
gate level modeling, 223
gate level primitives, 12, 137
gate level simulation, 12
gate level synthesis, 127
gate level timing, 7
gate output, 241
gate primitives, 85, 86, 102, 133
Gateway Design Automation, 11
generate loops, 233
generate statement, 96–98
genvar, 98
glitch, 38
Gray code, 162, 213
Gray code counter, 162, 163, 213

half-register, 235, 240
hardware description languages

(HDL), 11, 18, 103, 223
hardware generation, 10
hardware modules, 18
hardware/software environments, 73
HDL, See hardware description

languages
hexadecimal, 44
hierarchical design, 13
hierarchical fashion, 3
hierarchical naming, 91, 139,

200, 202
hierarchical structures, 93
hierarchy, 13, 91, 93, 207
high-impedance, 42, 153, 272, 302
high-level synthesis, 1
high-to-low propagation time (tphl),

25
hold time, 150
Huffman model, 176, 178–179,

187, 291
identifier, 41, 43–44
IEEE std 1364–1995, 11
IEEE std 1364–2001, 41
IEEE std 754–1985, 45
if statement, 123
if-condition, 120
if-else, 21, 25, 31, 113, 118–119, 161
immediate data, 266, 282

Index 379

implication, 217
implicit model, 136
inactive, 259
inactive values, 130
indexed part-select, 58
indexing memories, 59
infinite loop, 113, 147
initial, 65
initial block, 67–68
initial reseting, 217
initial statement, 34, 85, 122, 153,

183, 185, 192, 199, 200, 204
initial value, 42, 56
initializing reg, 197
inout, 43, 81–82, 154
inout ports, 225, 239
input, 43, 81–82
input/output specification, 23–24
instance name, 29, 33
instance name, 94, 96
instantiation, 19–20
instantiation statement, 4
instantiation statements, 4
instruction register, 281
integer, 44, 45, 57
interactive testbench, 201
interconnections, 26, 28–29, 82
intermediate format, 7
intermediate signal values, 57
intermediate wires, 20, 23
intra-assignment delay, 66, 68, 116,

204, 116–117
intra-assignment event, 116
invalid state, 218
iterative structure, 96

Join, See fork-join

large, 63
latch, 137, See also SR-latch
level (RTL), 3
LFSR and MISR, 163
limiting data sets, 198
linear feedback shift register (LFSR),

163–166
load, 157
localparam, 90, 171–172, 176
logic optimization, 8

logic value system, 41
logical operation, 22, 27, 48, 50, 287
logical shift, 51
low to high propagation time (tplh),

25

majority circuit, 86, 90
majority UDP, 88
master-slave flip-flop, 141–142,

240–241
maximum delay, 88
Mealy machine, 174, 181, 217
medium, 63
memory, 59, 110, 153
memory buffering, 276
memory initialization, 153
memory modeling, 276
memory read, 266, 293
min:typ:max, 88, 100, 103
minimum delay, 88
MISR, 164–164, 167–169
missing delay values, 226
mixbed synthesis, 132
mnemonic, 266
module, 18, 42, 81
module instantiation, 21, 72, 85, 91,

94, 113, 124, 132, 209
module name, 18
module path delay, 99–100
module ports, 43
module with no ports, 196
module-under-test, See MUT
modulus operation, 48
monitoring, 73, 191
monitors, 6
Moore machine, 31, 171, 174,

176, 178
multidimensional arrays, 46–47
multidimensional memories, 59, 137
multiple assignments, 68–69
multiple drivers, 64
multiple input signature register, See

MISR
multiplexer, 19–22, 35, 82, 83, 105,

111, 118, 119, 132, 230–232, 254,
257–259

multiply operation, 48
MUT, 85, 191

380 Index

named connection, 29, 94
named parameter assignment, 91
nand primitive, 242
n-bit adder, 97
negative edge, 24, 25
negedge, 23, 145
nested condition operators, 106
nested generate loops, 233
nested if-then-else, 106, 120
net, 42, 43, 55–56, 236
net assignments, 63–64
net declaration, 54, 56
net declaration assignment, 63–64,

111, 242–243
net strength, 242
netlist, 10, 12
nmos, 224–226, 232
NMOS-PMOS inverter, 235
nonblocking assignment, 24, 67–68,

117
nonblocking procedural assignments,

67, 68, 116
not, 83, 84
number specification, 45
numbers, 44–45

observability, 208, 220
octal, 44
octal latch, 157
odd-even parity, 104
opcode, 271
Open Verification Library, See OVL
operations, 48
operator precedence, 53
operators, 13, 48
ordered connection, 29, 94
ordered parameter assignment,

90–91, 94
ordered port connection, 29
output, 43, 81–82, 243
output latch, 129
output ports, 18
overdriving, 238
overflow, 124, 132
overriding parameters, 139
OVI (Open Verilog International),

11
OVL, 6, 11, 207–209, 220

parallel path, 101
parameter, 90, 91, 111
parameter declaration, 31
parameter override, 91
parameterized module instantiation,

91
parameters, 18, 57, 91
parity, 124–125
part-select, 58
pass gate logic, 230–231
path delay, 100–102
path delay specification, 99, 101, 102
period check, 150
pin-to-pin delay, 12, 93, 100
PLA, 12, 74
PLA modeling, 155
PLA modeling tasks, 74–75
PLD, 2
PLI, 72
pmos, 224, 232
polynomial, 164
ports, 18, 43, 81–82
posedge, 144, 145
positive-edge, 30
postsynthesis, 10, 128
postsynthesis simulation, 3, 10, 199
precedence of operators, 53
predefined bus resolution functions,

12
predefined gate primitives, 85
predefined parameters, 12
predefined wire resolution functions,

12
presynthesis description, 127
presynthesis simulation, 4
prime numbers, 194
primitive instantiation, 19, 94
primitives, 19, 82, 83, 85, 127
procedural, 21, 24
procedural assignments, 65, 66, 115,

117, 131
procedural assignments, 65–66,

130
procedural block, 85, 113
procedural block, 12, 13, 20, 40, 43,

112–118, 129, 137,
procedural blocking assignments, 66
procedural body, 40, 68

Index 381

procedural case statement, 120
procedural continuous assignment,

65, 69–70
procedural flow control, 65
procedural for statement, 122
procedural if-else, 118
procedural statement, 3, 34, 110, 130
procedural statement, 3
procedural while loop, 123
Program Counter, 281
programmable logic arrays, 155
programmable logic devices, See PLD
Programming Language Interface

(PLI), 13
propagation delay, 85
property, 6, 206–207
property coverage, 7
pseudo-static d-latch, 236
pseudo-static memory, 234
pull0, 63
pull1, 63
pulldown, 225
pull-down, 228, 229, 231
pull-up, 228, 231
pulup, 225

Quartus II, 10
queues, 167

random, 204
random access, 12
random data, 199
random number generation, 163
random time intervals, 204–205
range specification, 46
reading data files, 263
real, 44, 45, 57
realtime, 57
reduction, 125
reduction operation, 50–51, 105
reduction XOR, 124
reg, 25, 42, 54, 56–57, 113
reg data type, 52, 54, 56, 66
reg declaration, 56–57
register, 26
register block, 160
register file, 187, 281, 285, 288
register transfer, 3
register transfer level, See RTL

registers, 22
regular structure, 96, 97, 114
relational operation, 48, 105, 107
release, 70
repeat, 263
repeat statement, 198, 202
repetition multiplier, 52
replication operation, 48, 52
reset sequence, 216
resistive 0, 1, 42
resistive switches, 247
resolution, 64, 243–244
resolution function, 12, 224, 231,

244, 246
response observation, 207
retaining old values, 120, 121, 123,

129, 177
rise delay, 88, 90, 91, 103
rising clock edge, 30
ROM based controller, 181
routing and placement, 9
RT level, See RTL
RT level simulation, 4
RTL, 3, 15, 16, 17, 253, 264–265
RTL synthesis, 7

SAYEH, 281, 282
SAYEH datapath, 283
SAYEH Verilog description, 287
seed, 163, 164, 167
seed parameters, 165
sensitive, 181
sensitivity list, 26–27, 114, 129
sequence detector, 30–31, 171,

188, 204
sequential, 181
sequential blocks, 160, 180
sequential circuit, 70, 76, 135, 194
sequential circuit synthesis, 186
sequential circuit testing, 194, 218
sequential multiplier, 253
sequential UDP, 139–141
setup time, 149, 150
seven-segment display, 133
shadow instructions, 281
shift operation, 51, 52, 157
shift register, 26–27, 157
shift-and-add, 254
shifter, 26, 157, 232

382 Index

short instructions, 281
signal strength, 223, 241
signed, 54, 57
signed data, 57
signed number, 45
simple architecture, yet enough

hardware, See SAYEH
simple assignments, 61
simple procedural blocks, 113
simple tester, 33, 84
simulation, 3, 4
simulation control, 197
simulation control tasks, 74
simulation performance, 229
sizable register, 153
size mismatches, 109
size specification, 22
sized integer, 44
small, 63
Source, 226, 227
specify, 99
specify block, 90, 100–101, 149–150
specify parameters, 90
SRAM, 238
SR-latch, 137, 138
stacks, 167
standard memory, 58
state machine, 16, 31, 32, 171, 268
state machine coding, 171
state machine testing, 195
state transitions, 171
static memory element, 237
static parameters, 209
Status Register, 281
strength, 241, 243, 248
strength modeling, 231, 241, 250
strength reduction, 231, 247–248
strength specification, 62–63
strong, 238
strong0, 63
strong1, 63
supply0, 56, 63, 227
supply1, 56, 63, 227
switch, 243
switch level, 11, 13, 85, 127, 136,

228–230, 242, 250
switch level 2-to-1 multiplexer, 231
switch level barrel shifter, 234
switch level half-register, 235

switch level memory element, 235
switch level modeling, 11, 136, 223,

224, 241
switch level primitives, 224, 225, 227
switch level shifter, 232
switch level timing, 11
switch output, 241
sync-async, 74
synchronizer, 30
synchronous, 176, 180, 217
synchronous reset, 23, 24, 144
synchronous reset, 160–161
synchronous set, 144
synthesis, 7– 9, 13, 19, 125, 127, 128,

131, 181, 261, 273
synthesis tool, 11
synthesizable, 183, 270
synthesizable D-type flip-flop, 184
synthesizable gate level, 128
system functions, 75, 44, 72, 73
system tasks, 12, 34, 44, 72, 73
system tasks and functions, 72–76
system utilities, 12, 75

target device, 3
target hardware, 7, 9
target library, 129, 183
target technology, 127
task, See system task
test benches, 33–34
testbench, 4–6, 33, 43, 72, 84, 106, 191,

192–207, 205, 262, 266, 276, 298
testbench techniques, 195
three-state, See tri-state
timing, 4, 5, 7, 10, 13, 19, 34, 37–40,

64, 85, 135, 191, 223
timing analysis, 2, 8, 10, 11
timing and concurrency, 13, 37, 40, 76
timing check tasks, 74
timing constructs, 11
timing control, 67, 68, 113, 115, 143
timing diagram, 5, 214, 232, 239
timing parameters, 127
timing simulation, 11
timing specification, 9, 13, 39, 71, 93,

102, 149
timing-control constructs, 12
top-down design, 265
tran, 225

Index 383

tranif0, 225
tranif1, 225
transcript, 34
transistor primitives, 85
transitions to X, 86
transparent D-latch, 151
tri, 110
tri, 54, 55, 63, 110, 243
tri0, 55, 63, 110, 244
tri1, 44, 55, 63, 110, 244
triand, 110
triand, 54–55, 63, 110, 244, 111
triand bus, 111
tril, 55, 110
trior, 110
trior, 54–55, 63, 111, 110, 224
trior bus, 111
trireg, 54–56, 63, 236, 239, 243, 244
tri-state, 54, 55, 83, 85, 124, 125,

127, 129, 273, 285
tri-state buffer, 82, 83, 257, 259
tri-state busses, 129, 273
tri-state gate, 85, 127, 225
tri-state output, 132, 153
tri-state structures, 127
tri-state wired logic, 54
typical delay, 88

UDP, 87
UDP delay, 88
unary minus, 48
unary operator, 45
unary plus, 48
unary plus/minus, 48
unconnected ports, 72
underscore, 43, 45, 83
undriven, 42
unidirectional, 11, 225, 235
uninitialized value, 42
unit under test (UUT), 33
universal shift register, 26, 158, 159
unknown state, 235
unknown value, 42
unknown X state, 241
unsigned, 57, 44
unsized number, 44
unwanted latches, 120, 121, 129,

130, 261, 273, 288

up-down counter, 162, 187
user-defined primitives (UDP),

87, 88

valid states, 218
vector declaration, 47, 95
vector operation, 104
vectors, 41, 52, 151
verification, 1, 15, 191
verifying state machines, 213
Verilog attributes, 11
Verilog data types, 54
Verilog description for

synthesis, 7
Verilog evolution, 11
Verilog HDL, 1, 10, 13, 39
Verilog Simulation Model, 59
Verilog testbench, 4, 84, 266
Verilog–2001, 11
very large scale integration (VLSI),

223
VHDL, 11
von Neumann, 265, 270

wait statement, 146, 147, 202
wand, 111
wand, 54–56, 63, 110, 111
waveform editors, 4
weak0, 63
weak1, 63
while, 118
while loop, 123, 124, 279
width check, 150
wire, 19, 33, 54–55, 82, 110
wire values and timing, 82
wires, 81
wor, 54–56, 63, 64, 71, 110, 111,

232, 244

X value, 42
x value, 42, 55, 84, 230
xnor, 85
XNOR operation, 50
xor, 85

Z value, 42
z value, 42, 48, 55, 56, 87,

225, 226

384 Index

